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Introduction 

Let G be a nonempty set and   be a binary operation on G, i.e. 
a b   G for all a, b    G. Then (G,   ) is a group or simply G is a group 

(under the operation  ) if  
1. a   ( b   c ) = (a   b )   c for all a, b & c   G  (Associative law) 

2. ∃  e   G such that a   e = e   a = a  for all a    (e is called an 

identity of G) 
3. For each a  G, ∃ a

’
   G such that a   a

’
 =a

’
   a = e(a is called inverse 

of a). For the sake of simplicity we use ab for a   b and a
-1

 for a
’
. 

A group G is said to be abelian (commutative) if ab = ba      a, b   G. 

A group G is said to be finite if G is a finite set, otherwise G is an 
infinite group. 

The number of elements in G is denoted by |G| (or o(G)) and it is 
called the order of G. 

If G has exactly n distinct elements then |G|= n. 
Example 1   

(  , +), ( , +), ( , +), ( , +) are infinite abelian groups with identity 0. 

( 
+
,  ), ( 

*
,   ), ( 

+
,   ), ( 

*
,   ), ( 

*
,   ) are infinite abelian groups with 

identity 1,  
where   

+
= {x        | x > 0  } 

    
* 
=    - {0}     

For  n    , ( n, +n ) is a group of order n, under +n where  n = {0, 

1, 2, …, n-1} and a +n b = the least nonnegative integer when a + b is 
divided by n. 

For a prime number p,   
  = { 1, 2, … , p-1} is a group under •n, 

and ,  p is a field.For n > 1 , 

U(n) = { k    | k < n and gcd(k ,n) = 1} is an abelian group under 

•n and order is denoted by   (n), 

GL(n,   ) , SL(n,   ) are groups under matrix multiplication with 

identity I, the n × n unit matrix. 
Properties   

Let G be a group with identity e. Then, 
1. The identity element of G is unique. 
2. Every a   G has unique inverse. 
3. (a

-1
)
-1

 = a for all a   G. 

4. (ab)
-1

 = b
-1

 a
-1

      a, b   G. More general (  1   2…   k)
-1

 = 

  
      

     
    

   for all     i    G. 

5. Cancellations laws:  For a, u, w   G,  

au = aw      u = w    LCL 

ua = wa      u = w    RLC. 

6.  For any a, b   G, the equations ax = b and ya = b have unique 

solutions in G. 
7. If a

2
 = e ( i.e. a = a

-1
)     a    then G is abelian. 

Definition   

Let G be a group with identity e and n    , we define integral 

powers of a as follows 
  a

0
 = e , a

1
 = a and for any   a    ;  

a 
n+1

 = a
n
 a   i.e. a

n
 = a a… a (n times),   a

-n
 = (a

-1
)
n
 . 

Properties 

 In a group G with identity e; for any a    and m, n     , 

1. a
-n

 = ( a
n
)
-1

 = (a
-1

)
n
     

2. a
m
 a

n
 = a

m+n
    

Abstract 
Order of group elements give some information about its 

structure, such as about center of group. We can construct  non-abelian 
p-groups with order of each non-identity element is p etc. 
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3. (a
m
)
n
 = a

mn
 = (a

n
)
m
  

4. e
n
 = e. 

Note that a group G is abelian   iff (ab)
2
 = a 

2
 

b
2
    a, b   G and if G is abelian,  

           then (ab)
n
 = a

n
 b

n
        n    

Definition 

Let (G,  ) be a group and H be a nonempty 

subset of G. If (H ,  ) is a group, then H is called a 

subgroup of G. 
Note that if       G and G is a group then 

(subgroup tests): 
H is a subgroup of G iff ab, a

-1
       a, b   H 

  iff    ab
-1  

   H   a, b   H 

  iff   ab       for all a, b   H, for a finite set H. 
Definition  

Let G be a group. Then Z(G) = { x     | xy = 

yx    y     } is an abelian subgroup of G, called the 

centre of the group. 
      G is abelian iff Z(G) = G. 
Definition   

Let G be a group, a     and with a
0
 = e, 

identity. The least positive integer n such that a
n
 = e is 

called order of a and we write |a| = n. 
Thus |a| = n     means a

n
 = e and a

r
   e for 

any r    , r < n. 

If no such n exists, i.e. a
n
   e for all n     

then a is said to be of infinite order. 
Identity is only group element of order 1. 

To find the order of a group element g, 
compute the sequence of products  g, g

2
, g

3
, … until 

reach the identity for the first time. The exponent of 
this product is the order of g. If the identity never 
appears in the sequence, then g has infinite order. 
Theorem [2]  

Let G be a group with identity e and a     

with |a| = n    . Then 

1. <a> = {a
k
 | k     } = { e, a, a

2
, …, a

n-1
} is a 

subgroup of G of order n. 
2. a

k
 = e iff n | k      (n = |a| and k     ). 

TheoremFundamental Theorem of Cyclic Groups 
[1] 

 Every subgroup of a cyclic group is cyclic. 
Moreover, if |<a>| = n, then the order of any subgroup 
of <a> is a divisor of n; and, for each positive divisor k 
of n, the group <a> has exactly one subgroup of order 
k- namely <a

 n/k
>. 

Some Results About Order of Group Elements 

Following proposition and results are well 
established for more details please refer [2] or any 
standard book on group theory.  
Proposition   

Let a be a group element of order n. Then for 

any k     , |a
k
| = 

 

          
 . 

Solution   

Let gcd (n, k) = d. Then n = sd, k = td  where 
s     , t      and gcd (s, t) = 1. 

( a
k
)
s
 = (a

n
)
 t

 = e and for any m    , with       

(a
 k
)
 m

 = e    n = |a| = sd  divides km = tdm s | tm    s 

| m since gcd (s, t) = 2   s | m    i.e. s  ≤ m.  

Hence |a
 k
| = s = 

 

 
    

From above proposition (0) for a
k
   <a> = 

{ e, a, a
2
 , …, a

n - 1
},  

|a
k
| = n iff d = 1 i.e. gcd( n, k) = 1 

i.e. a
k 

 is a generator of <a> iff k    U(n) and hence 
<a> has  (n) generators i.e. elements of order n in 

<a>. 

1. |a
-1

| =  
 

           
 = n = |a| 

2. a 
k
 = e iff |a

k
| = 1 i.e. gcd(n, k)= n iff n|k where |a| 

= n. 

3. For a positive divisor k of n, |a
n/k

| = 
 

            
  =  

 
 

 
            

 = k. 

4. For any k     , |a
k
| = 

 

          
 = | a

 n/n/gcd (n, k) 
| =      

| a
gcd(n,k)

| 
5. <a

k
>   <a

s
> iff < a

 gcd(n, k) 
>   < a 

gcd(n, s)
 > i.e.    

a
gcd(n, k)

   < a
gcd(n, s)

 > iff  gcd(n, s) | gcd(n, k).<a
k
> 

= <a
s
> iff gcd(n, s) = gcd(n, k). 

Result     

(bab
-1

)
k
 = ba

k
b

-1
 . So (bab

-1
)
k
 = e iff ba

k
b

-1
 = e  i.e. 

a
k
 = e. 

This proves |bab
-1

| = |a| for all group elements a 
& b. 
From this |b(ab)b

-1
| = |ab| i.e. |ba| = |ab|. 

Result   

Let G be a group with identity e and a, b     of 

finite order with ab = ba  
1. |ab| divides lcm(|a|, |b|) 
2. If <a>   <b> = {e} then |ab| = lcm(|a|, |b|) 

3. If |a|, |b| are relatively prime then |ab| = |a||b|. 
Proof   

Let |a| = m, |b| = n where ab = ba i.e. (ab)
i
 = 

a
i
 b

i
      i     and |ab|=|ba|=k , l=lcm(|a|, |b|) = lcm(m, 

n). 
(a) As m |l, n|l  so a

l
 = e =b

l
 =b

 -1  

  (ab)
l 
= a

l 
b

1 
= ee = e   i.e. k = |ab|divides l  i.e. k|l 

(b) Let <a>   <b> = e .  Now (ab)
k  

=e     a
k
 = b

-k  
 

 <a>   <b> ={e} 
i.e. a

k
 = b

–k
 =e= b

k
  

   m =|a|divides k , n =|b|divides k  i.e l= lcm(m, n) 

divides k . 
k|l  & l|k  gives k = l 
(c) As|a| , |b| are relatively prime , we have <a>   <b> 

= {e} 
[  1 = mr + ns .    x   <a>   <b>     x= a

m1
 =b

n1 
 for 

some m1 , n1       
And so x

1
   = x 

mr + ns 
 =(a

m1
 )

mr  
(b

n1
)
ns 

 = e       <a>   

<b> = {e}  
By (b) , |ab| = lcm(|a|,|b|) = |a||b|. 
Example 2   

GL (2,  )= {  
  
  

  / a, b, c, d     and  ad-

bc   0 } is a non abelian group under matrix 

multiplication with identity I =  
  
  

   . (General linear 

group of 2 2 matrices over    ) 

SL (2,  )=                         is a 

subgroup of GL (2,  ) (Special linear group of 2  2 
matrices over    ) 
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Consider the elements A =  
   
  

  and B = 

 
  
    

  form SL (2,  .) 

We determine |A|, |B| and |AB|.  

Now  A    I, A
2
 =   

   
  

   
   
  

  =  
   

   
    I,  

A
3
 =  

   

   
   
   
  

  =  
  

   
     I , A

4
 =  

  

   
  

 
   
  

  = I    |A|= 4 

B   I, B
2
 =  

  
    

   
  
    

  =  
    
  

     I , B
3
 =  

I   |B| = 3. 

AB =  
   
  

   
  
    

  =  
  

  
    I , (AB)

2
 =  

  

  
  

 
  

  
  =  

  

  
    I, … 

(AB)
n
  =  

  

  
    I     n         |AB| = + . 

Application  

Z(A4) = {(1)} , Z(A5) = {(1)},  Z(A6) = {(1)} etc. 
Suppose Z(A4)   {(1)}.  As the orders of elements 

of A4 are 1, 2 and 3, So  ∃ a   Z(A4) with |a| = 2 or 3 

If |a| = 2, then for b   A4 with |b|= 3 we have ab = 

ba   A4  such that |ab| = 2   3 = 6 , a contradiction. 

Similarly if |a|= 3 then we get an element of order 6 in 
A4 , a contradiction. 

So the supposition Z(A4) is nontrivial 
subgroup of A4 is wrong.  Hence Z(A4) = {(1)} is a 
trivial subgroup. 
           Possible orders of elements of A5 are 1, 2, 3, 5. 

If  Z(A5)   {(1)} then ∃ a   Z(A5) with |a|   {2, 3, 

5}, then we find b   A4 with |b| = {2, 3, 5} – {|a|}, ab = 

ba   A4 with |ab|   {6, 10, 15}, a contradiction. Hence 
Z(A5) = {(1)} 

Possible orders of elements of A6 are1,2, 3, 4, 5.  
If Z(A6)   {(1)} then ∃ a   Z(A6), a      and    

∃ b   A6 and so ab = ba   A6 with |ab|  {6, 12, 10, 15, 

20} a contradiction. 
Hence Z(A6) = {(1)} 
Possible orders of elements of A7 are 1, 2, 3, 

4, 5, 6, 7. 
If Z(A7)   {(1)}, then   ∃ a   Z(A7), a      
And  ∃ b   A7 and so ab = ba   A7 with |ab|  

{10,14,12,15,21,20,28,30,35,42}a contradiction.Hence  
Z(A7) = {(1)}. 
Remark   

If R is a ring and it satisfies any one of the 
following condition 

(a) x
2
 = x     x   R   (b) x

3
 = x     x   R   (c) 

x
4
 = x     x   R then R is a commutative. For (a), R is 

a Boolean ring. 
If G is a group and it satisfies anyone of the 

following condition 
(d) x

2
 = x     x   G   (e) x

3
 = x     x   G then 

G is commutative. For (d), G is a trivial group. 
Heisenberg Group    

G =   
   
   
   

               is a group 

under matrix multiplication with identity I =  
   
   
   

 . 

This group is called Heisenberg group after 
the Nobel Prize winning Physicist Werner Heisenberg, 
is intimately related to the Heisenberg Uncertainty 
Principle of Quantum Physics. 

For A =  
   

   

   

  , B =  
   

   

   

     G we 

have AB   BA;  

Since AB= 
   

   

   

  , BA =   
   

   

   

        … (*) 

    G is non abelian. 

For X =  
   
   
   

    G , by induction we obtain 

 

X
n
 =  

      
        

 

    
   

    n     ……  (**) 

Result  

For a group H , if x
2
 = e, identity    x    

then H is abelian. 
Here we can not replace 2 by any number 

greater than 2. That is any fixed integer n > 2, we can 
obtain a non abelian group K with identity e such that 

x
n
 = e   x   . 

Note   

For a prime p,  p = {0, 1, …, p-1} is a field 

under addition and multiplication modulo p. 
For a prime p,  

Gp =   
   
   
   

                  is a group under 

matrix multiplication (in arithmetic modulo p) of order 

p
3
 with identity I =  

   
   
   

  and it is non abelian by 

(*). 

By (**), for p > 2,   X =  
   
   
   

    G p ,  

x
p
 =  

       
        

 

    
   

  =  
   
   
   

 = I, 

identity, since p | 
      

 
  etc. Thus for any  

prime p > 2,we can have a non abelian 
group Gp of order p

3
 such that x

p
 = I,identity,  x in G p. 

In group Gp , each nonidentity element has 
order p and |Z(Gp)| = p. 

Now consider any integer n > 2, then 4 |n or 
n has an odd prime factor. 

If 4 | n then G2 is the nonabelian group of 
order 8 such that  

  X =  
   
   
   

    G 2 , X
4
 =   

         
    
   

   =I 

If an odd prime p is a factor of n then Gp is 
the nonabelian group of order p

3
 such that x

n
 = I, 

identity   X   Gp , since x
p
 = I        p and p | n. 

 
 

Proposition  
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Let G be a finite group with the property that 
every non identity element has prime order and Z(G) 
is not trivial. Then every non identity element of G has 
the same order. 
Proof   

Let G be a finite nontrivial group with identity 
e,with the property that every non identity element has 
prime order and Z(G)   {e}. 

Consider any a   Z(G), any b   G with a  e   b. 

By hypothesis |a|= p, |b| = q are primes and 
ab = ba   G  

   |ab| = lcm(|a|, |b|) = lcm(p, q) is a prime, showing p 

= q. 
Thus   x   G , x   e, we must have |x| = |a| = 

p, prime. 
Note 1 

(1) For each prime p, D2p is a dihedral 
nonabelian group of order 2p in which one element 
isidentity, p-1 elements are of order p and remaining p 
elements are of order 2. 
    Z(D2p) = {e} 

(2) A4 is a nonabelian group of order 12 and 
it contains elements of orders 1, 2, 3 . So Z(A4) = 
{(1)}. 

(3) A5 is a non-abelian group of order 60 and 
it contains elements of orders 1, 2, 3 and 5. So Z(A5)= 
{(1)}. 

(4) For n ≥ 6, A6 has elements of composite 
order and Z(An) = {(1)}. 
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