Asian Resonance Some Results on Group Elements

Abstract

Order of group elements give some information about its structure, such as about center of group. We can construct non-abelian p-groups with order of each non-identity element is p etc.

Keywords: Cyclic Group,p-Group,Heisenberg Group,Center of Group Introduction

Let G be a nonempty set and * be a binary operation on G, i.e. $a * b \in G$ for all a, b $\in G$. Then (G, *) is a group or simply G is a group (under the operation *) if

- 1. a * (b * c) = (a * b) * c for all $a, b \& c \in G$ (Associative law)
- 2. $\exists e \in G$ such that a * e = e * a = a for all $a \in G$ (e is called an identity of G)
- 3. For each $a \in G$, $\exists a \in G$ such that a * a = a * a = e(a is called inverse)of a). For the sake of simplicity we use ab for a * b and a^{-1} for a. A group G is said to be abelian (commutative) if $ab = ba \quad \forall a, b \in G$.

A group G is said to be finite if G is a finite set, otherwise G is an infinite group.

The number of elements in G is denoted by |G| (or o(G)) and it is called the order of G.

If G has exactly n distinct elements then |G| = n.

Example 1

 $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ are infinite abelian groups with identity 0. $(\mathbb{Q}^+, \circ), (\mathbb{Q}^{\tilde{}}, \circ), (\mathbb{R}^+, \circ), (\mathbb{R}^{\tilde{}}, \circ), (\mathbb{C}^{\tilde{}}, \circ)$ are infinite abelian groups with identity 1,

where $\mathbb{Q}^+ = \{x \in \mathbb{Q} \mid x > 0\}$

 $\mathbb{Q} = \mathbb{Q} - \{0\}$

For $n \in \mathbb{N}$, $(\mathbb{Z}_n, +_n)$ is a group of order n, under $+_n$ where $\mathbb{Z}_n = \{0,$ 1, 2, ..., n-1} and a $+_n$ b = the least nonnegative integer when a + b is divided by n.

For a prime number p, $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$ is a group under \bullet_n , and , \mathbb{Z}_p is a field. For n>1 ,

 $U(n) = \{ k \in \mathbb{N} | k < n \text{ and } gcd(k, n) = 1 \}$ is an abelian group under •n and order is denoted by $\varphi(n)$,

 $GL(n,\ \mathbb{R}$) , $SL(n,\ \mathbb{R}$) are groups under matrix multiplication with identity I, the $n \times n$ unit matrix.

Properties

Let G be a group with identity e. Then,

- The identity element of G is unique. 1.
- 2. Every $a \in G$ has unique inverse.
- $(a^{-1})^{-1} = a$ for all $a \in G$. 3.
- $(ab)^{-1} = b^{-1} a^{-1}$ \forall a, b \in G. More general $(a_1 a_2 \dots a_k)^{-1} =$ 4. $a_k^{-1}a_{k-1}^{-1}\dots a_2^{-1}a_1^{-1}$ for all $a_i \in G$.
- 5. Cancellations laws: For a, u, $w \in G$,
 - $au = aw \Rightarrow u = w LCL$
 - $ua = wa \Rightarrow u = w RLC.$
- For any a, $b \in G$, the equations ax = b and ya = b have unique 6. solutions in G.

7. If $a^2 = e$ (i.e. $a = a^{-1}$) $\forall a \in G$ then G is abelian.

Definition

Let G be a group with identity e and $n \in \mathbb{N}$, we define integral powers of a as follows

 $a^{0} = e$, $a^{1} = a$ and for any $a \in G$; $a^{n+1} = a^{n} a$ i.e. $a^{n} = a a \dots a$ (n times), $a^{-n} = (a^{-1})^{n}$.

Properties

- In a group G with identity e; for any $a \in G$ and m, $n \in \mathbb{Z}$,
- 1. $a^{-n} = (a^n)^{-1} = (a^{-1})^n$
- 2. $a^m a^n = a^{m+n}$

J. N. Salunke

School of Mathematical Sciences SRTM University, Nanded.

S. P. Basude

School of Mathematical Sciences SRTM University, Nanded.

P: ISSN No. 0976-8602

E: ISSN No. 2349 - 9443

3.
$$(a^m)^n = a^{mn} = (a^n)^m$$

4. $e^n = e$

Note that a group G is abelian iff $(ab)^2 = a^2$ $b^2 \forall a, b \in G and if G is abelian,$

then $(ab)^n = a^n b^n \quad \forall n \in \mathbb{Z}$

Definition

Let (G, *) be a group and H be a nonempty subset of G. If (H, *) is a group, then H is called a subgroup of G.

Note that if $\phi \neq H \subseteq G$ and G is a group then (subgroup tests):

H is a subgroup of G iff ab, $a^{-1} \in H \forall a, b \in H$

iff ab⁻¹ ∈ H ∀ a, b ∈ H

iff $ab \in H$ for all $a, b \in H$, for a finite set H. Definition

Let G be a group. Then $Z(G) = \{x \in G \mid xy =$ $yx \forall y \in G$ } is an abelian subgroup of G, called the centre of the group.

G is abelian iff Z(G) = G.

Definition

Let G be a group, $a \in G$ and with $a^0 = e$, identity. The least positive integer n such that aⁿ = e is called order of a and we write |a| = n.

Thus $|a| = n \in \mathbb{N}$ means $a^n = e$ and $a^r \neq e$ for any $r \in \mathbb{N}$, r < n.

If no such n exists, i.e. $a^n \neq e$ for all $n \in \mathbb{N}$ then a is said to be of infinite order.

Identity is only group element of order 1.

To find the order of a group element g, compute the sequence of products $g, g^2, g^3, ...$ until reach the identity for the first time. The exponent of this product is the order of g. If the identity never appears in the sequence, then g has infinite order. Theorem [2]

> Let G be a group with identity e and $a \in G$ with $|a| = n \in \mathbb{N}$. Then

1.
$$= \{a^{k} \mid k \in \mathbb{Z} \} = \{e, a, a^{2}, ..., a^{n-1}\}$$
 is a subgroup of G of order n.

2. $a^k = e \text{ iff } n \mid k$ $(n = |a| \text{ and } k \in \mathbb{Z}).$

TheoremFundamental Theorem of Cyclic Groups [1]

Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a \rangle| = n$, then the order of any subgroup of <a> is a divisor of n; and, for each positive divisor k of n, the group <a> has exactly one subgroup of order k- namely <a $^{n/k}$ >.

Some Results About Order of Group Elements

Following proposition and results are well established for more details please refer [2] or any standard book on group theory.

Proposition

Let a be a group element of order n. Then for any $k\in\mathbb{Z}$, $|a^k|=\frac{n}{\gcd{(n,k)}}$.

Solution

Let gcd(n, k) = d. Then n = sd, k = td where $\begin{array}{l} s\in\mathbb{N} \text{ , } t\in\mathbb{Z} \text{ and gcd } (s,t)=1. \\ \left(\begin{array}{c} a^k \right)^s = \left(a^n \right)^t = e \text{ and for any } m\in\mathbb{N}, \text{ with } \end{array}$

 $(a^{k})^{m} = e \Rightarrow n = |a| = sd divides km = tdm s | tm \Rightarrow s$ $\mid m \text{ since gcd } (s, t) = 2 \Rightarrow s \mid m \quad i.e. \ s \ \leq m.$

Hence $|a^{k}| = s = \frac{n}{d}$

Asian Resonance

From above proposition (0) for $a^k \in \langle a \rangle = \{e, a, a^2, ..., a^{n-1}\},\$

 $|a^{k}| = n$ iff d = 1 i.e. gcd(n, k) = 1

i.e. a^k is a generator of $\langle a \rangle$ iff $k \in U(n)$ and hence <a> has $\varphi(n)$ generators i.e. elements of order n in <a>.

- 1. $|a^{-1}| = \frac{n}{\gcd(n_{\nu}^{-1})} = n = |a|$
- $a^{k} = e \inf_{i \neq j} |a^{k}| = 1$ i.e. $gcd(n, k) = n \inf_{i \neq j} n|k$ where |a|
- For a positive divisor k of n, $|a^{n/k}| = \frac{n}{\gcd(n,n/k)}$ $\frac{n}{\frac{n}{k} \gcd(k,1)} = \mathsf{k}.$

4. For any $k \in \mathbb{Z}$, $|\mathbf{a}^k| = \frac{n}{\gcd(n,k)} = |\mathbf{a}^{n/n/\gcd(n,k)}| =$ | a^{gcd(n,k)}|

 $\begin{array}{l} <a^k>\subseteq <a^s> \mbox{ iff } <a^{\gcd(n,\ k)}>\subseteq <a^{\gcd(n,\ s)}> \mbox{ i.e.}\\ a^{\gcd(n,\ k)}\in <a^{\gcd(n,\ s)}> \mbox{ iff } \ \gcd(n,\ s)\mid \gcd(n,\ k).<\!a^k\!> \end{array}$ 5. $= \langle a^{s} \rangle$ iff gcd(n, s) = gcd(n, k).

Result

 $(bab^{-1})^{k} = ba^{k}b^{-1}$. So $(bab^{-1})^{k} = e$ iff $ba^{k}b^{-1} = e$ i.e. a^k = e.

This proves $|bab^{-1}| = |a|$ for all group elements a & b.

From this $|b(ab)b^{-1}| = |ab|$ i.e. |ba| = |ab|.

- Result Let G be a group with identity e and a, $b \in G$ of
- finite order with ab = ba
- |ab| divides lcm(|a|, |b|) 1.
- 2. If $\langle a \rangle \cap \langle b \rangle = \{e\}$ then |ab| = lcm(|a|, |b|)
- 3. If |a|, |b| are relatively prime then |ab| = |a||b|.

Proof

Let |a| = m, |b| = n where ab = ba i.e. $(ab)^{\prime} =$ aⁱ bⁱ $\forall i \in \mathbb{Z} \text{ and } |ab|=|ba|=k , l=lcm(|a|, |b|) = lcm(m,)$ n).

(a) As m |I, n|I so $a^{I} = e = b^{I} = b^{-1}$

 \Rightarrow (ab)^I = a^Ib¹ = ee = e i.e. k = |ab|divides I i.e. k|I

(b) Let $\langle a \rangle \cap \langle b \rangle = e$. Now $(ab)^k = e \Rightarrow a^k = b^{-k} \in$

<a> ∩ ={e}

i.e. $a^{k} = b^{-k} = e^{k} = b^{k}$

 \Rightarrow m =|a|divides k , n =|b|divides k i.e l= lcm(m, n) divides k.

k|| & ||k gives k = 1

(c) As|a|, |b| are relatively prime, we have $\langle a \rangle \cap \langle b \rangle$ = {e}

 $\begin{bmatrix} 1 = mr + ns \\ . \\ \forall x \in \langle a \rangle \cap \langle b \rangle \Rightarrow x = a^{m1} = b^{n1} \text{ for}$

some m_1 , $n_1 \in \mathbb{Z}$ And so $x^1 = x^{mr + ns} = (a^{m1})^{mr} (b^{n1})^{ns} = e \implies \langle a \rangle \cap$ $ = \{e\}$

By (b), |ab| = Icm(|a|,|b|) = |a||b|.

Example 2

GL (2, \mathbb{R})= { $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ / a, b, c, d $\in \mathbb{R}$ and ad-bc \neq 0 } is a non abelian group under matrix multiplication with identity I = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. (General linear group of 2×2 matrices over ℝ)

SL $(2, \mathbb{R})$ = { $A \in GL(2, \mathbb{R}) \mid det A = 1$ } is a subgroup of GL (2, ℝ) (Special linear group of 2× 2 matrices over \mathbb{R})

E: ISSN No. 2349 - 9443

Consider the elements $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ form SL (2, \mathbb{R} .) We determine |A|, |B| and |AB|. Now $A \neq I, A^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \neq I,$ $A^3 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \neq I, A^4 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = I \Rightarrow |A| = 4$ $B \neq I, B^{2} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \neq I, B^{3} = I \Rightarrow |B| = 2$ $\begin{array}{l} B \neq 1, \ C & L-7 & -11 \ C & 1 \\ I \Rightarrow |B| = 3. \\ AB = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \neq I, \ (AB)^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \neq I, \ \dots \\ (AB)^n = \begin{bmatrix} 1 & \Box \\ 0 & 1 \end{bmatrix} \neq I \quad \forall n \in \mathbb{N} \quad \Rightarrow |AB| = +\infty.$

 $Z(A_4) = \{(1)\}, Z(A_5) = \{(1)\}, Z(A_6) = \{(1)\}$ etc.

Suppose $Z(A_4) \neq \{(1)\}$. As the orders of elements of A₄ are 1, 2 and 3, So $\exists a \in Z(A_4)$ with |a| = 2 or 3

If |a| = 2, then for $b \in A_4$ with |b|= 3 we have ab = $ba \in A_4$ such that $|ab| = 2 \times 3 = 6$, a contradiction. Similarly if |a|= 3 then we get an element of order 6 in A_4 , a contradiction.

So the supposition Z(A₄) is nontrivial subgroup of A₄ is wrong. Hence $Z(A_4) = \{(1)\}$ is a trivial subgroup.

Possible orders of elements of A₅ are 1, 2, 3, 5.

If $Z(A_5) \neq \{(1)\}$ then $\exists a \in Z(A_5)$ with $|a| \in \{2, 3, 3\}$ 5}, then we find $b \in A_4$ with $|b| = \{2, 3, 5\} - \{|a|\}$, ab =ba $\in A_4$ with $|ab| \in \{6, 10, 15\}$, a contradiction. Hence $Z(A_5) = \{(1)\}$

Possible orders of elements of A₆ are1,2, 3, 4, 5.

If $Z(A_6) \neq \{(1)\}$ then $\exists a \in Z(A_6), a \neq (1)$ and $\exists b \in A_6$ and so $ab = ba \in A_6$ with $|ab| \in \{6, 12, 10, 15,$ 20} a contradiction.

Hence $Z(A_6) = \{(1)\}$

Possible orders of elements of A7 are 1, 2, 3, 4, 5, 6, 7.

If $Z(A_7) \neq \{(1)\}$, then $\exists a \in Z(A_7), a \neq (1)$

And $\exists b \in A_7$ and so $ab = ba \in A_7$ with $|ab| \in$ {10,14,12,15,21,20,28,30,35,42}a contradiction.Hence $Z(A_7) = \{(1)\}.$ Remark

If R is a ring and it satisfies any one of the following condition

(a) $x^2 = x \quad \forall x \in R$ (b) $x^3 = x \quad \forall x \in R$ (c) $x^4 = x \quad \forall x \in R$ then R is a commutative. For (a), R is a Boolean ring.

If G is a group and it satisfies anyone of the following condition

(d) $x^2 = x \quad \forall x \in G$ (e) $x^3 = x \quad \forall x \in G$ then G is commutative. For (d), G is a trivial group. **Heisenberg Group**

$$\mathbf{G} = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\} \text{ is a group}$$

under matrix multiplication with identity I = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Asian Resonance

This group is called Heisenberg group after the Nobel Prize winning Physicist Werner Heisenberg, is intimately related to the Heisenberg Uncertainty Principle of Quantum Physics.

For A =
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, B = $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ \in G we have AB \neq BA;
(1 2 5) = (1 2 4)

Since $AB = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$, $BA = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$ \Rightarrow G is non abelian. ... (*)

For X = $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \in G$, by induction we obtain

$$X^{n} = \begin{pmatrix} 1 & na & nb + \frac{n(n-1)ac}{2} \\ 0 & 1 & nc \\ 0 & 0 & 1 \end{pmatrix} \forall n \in \mathbb{N} \dots (**)$$

For a group H , if $x^2 = e$, identity $\forall x \in \Box$ then H is abelian.

Here we can not replace 2 by any number greater than 2. That is any fixed integer n > 2, we can obtain a non abelian group K with identity e such that $\mathbf{x}^{\mathbf{n}} = \mathbf{e} \ \forall \ \mathbf{x} \in K.$

For a prime p, $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field under addition and multiplication modulo p. For a prime p,

 $G_{p} = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z}p \right\} \text{ is a group under}$ matrix multiplication (in arithmetic modulo p) of order p³ with identity I = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and it is non abelian by (*).

By (**), for p > 2,
$$\forall X = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \in G_p$$
,
$$x^p = \begin{pmatrix} 1 & pa & pb + \frac{p(p-1)ac}{2} \\ 0 & 1 & pc \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = H$$

identity, since $p \mid \frac{p(p-1)}{2}$ etc. Thus for any prime p > 2,we can have a non abelian group G_p of order p^3 such that $x^p = I$,identity, $\forall x \text{ in } G_p$. In group G_p , each nonidentity element has order p and $|Z(G_p)| = p$.

Now consider any integer n > 2, then 4 |n or n has an odd prime factor.

If $4 \mid n$ then G_2 is the nonabelian group of order 8 such that

$$\forall X = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \in \mathbf{G}_2, X^4 = \begin{pmatrix} 1 & 4a & 4b + 6ac \\ 0 & 1 & 4c \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$

If an odd prime p is a factor of n then G_p is the nonabelian group of order p^3 such that $x^n = I$, identity $\forall X \in G_p$, since $x^p = I \forall \Box \in \Box_p$ and $p \mid n$.

Proposition

P: ISSN No. 0976-8602

E: ISSN No. 2349 - 9443

Asian Resonance

Let G be a finite group with the property that every non identity element has prime order and Z(G) is not trivial. Then every non identity element of G has the same order.

Proof

Let G be a finite nontrivial group with identity e,with the property that every non identity element has prime order and $Z(G) \neq \{e\}$.

Consider any $a \in Z(G)$, any $b \in G$ with $a \neq e \neq b$. By hypothesis |a|=p, |b|=q are primes and $ab = ba \in G$

 \Rightarrow |ab| = lcm(|a|, |b|) = lcm(p, q) is a prime, showing p = q.

Thus $\forall x \in G$, $x \neq e$, we must have |x| = |a| = p, prime.

Note 1

(1) For each prime p, D_{2p} is a dihedral nonabelian group of order 2p in which one element isidentity, p-1 elements are of order p and remaining p elements are of order 2.

 \Rightarrow Z(D_{2p}) = {e}

(2) A_4 is a nonabelian group of order 12 and it contains elements of orders 1, 2, 3 . So $Z(A_4) = \{(1)\}$.

(3) A_5 is a non-abelian group of order 60 and it contains elements of orders 1, 2, 3 and 5. So $Z(A_5)$ = {(1)}.

(4) For $n \ge 6$, A_6 has elements of composite order and $Z(A_n) = \{(1)\}$.

References

- Joseph A. Gallian, Contemporary Abstract Algebra, First Narosa Publishing House Reprint (1999).
- 2. Sudesh Kumari Shah and Asha Gauri Shankar, Group Theory, Pearson second reprint (2014).