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Abstract

Order of group elements give some information about its
structure, such as about center of group. We can construct non-abelian
p-groups with order of each non-identity element is p etc.
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Introduction
Let G be a nonempty set and * be a binary operation on G, i.e.
axb € G for all a, b € G. Then (G, * ) is a group or simply G is a group
(under the operation ) if
1. ax(bxc)=(axb)=*cforalla,b&ceG (Associative law)
2. 3 eeGsuchthataxe=exa=a forallaeG (eis called an
identity of G)
3. Foreacha€eG,3a eGsuchthataxa =a »a=e(ais called inverse
of a). For the sake of simplicity we use ab fora x b and a’ Yfora.
A group G is said to be abelian (commutative) ifab=ba Vv a,beG.
A group G is said to be finite if G is a finite set, otherwise G is an
infinite group.
The number of elements in G is denoted by |G| (or o(G)) and it is
called the order of G.
If G has exactly n distinct elements then |G|=n
Example 1
(Z,+), (@ +), (R +), (C, +) are infinite abelian groups with identity O.
(@, o), (Q o), (R, o), (R o), ((C o ) are infinite abelian groups with

identity 1,
where Q'={x € Q |x>0 }

Q = Q-{0}

For n €N, (Z,, +n) is a group of order n, under +, where Z, = {0,
1, 2, ..., n-1} and a +, b = the least nonnegative integer when a + b is
divided by n.

For a prime number p, Z; = {1, 2, ... , p-1} is a group under *n,

and , Zpis afield.Forn>1,
U(n) ={k € N| k < n and gcd(k ,n) = 1} is an abelian group under
*n and order is denoted by ¢(n),
GL(n, R ), SL(n, R ) are groups under matrix multiplication with
identity I, the n x n unit matrix.
Properties
Let G be a group with identity e. Then,
The identity element of G is unique.
Ever¥ a € G has unique inverse.
(& ) —aforallaeG
(ab)* = b* a* V a, b € G. More general (a 1a 2...a " =
agtagl; ..azta;tforall a; €G.
Cancellations laws: For a, u, w € G,
au=aw =u=w LCL
ua=wa =u=w RLC.
6. For any a, b € G, the equations ax = b and ya = b have unique
solutlons in G.
7. Ifa’=e(ie.a=a") VaceGthenGis abelian.
Definition
Let G be a group with identity e and n € N, we define integral
powers of a as follows
a’=e,a’ =aandforany a€g;
a™=a"a ie.a'=aa. .a(ntimes), a"=(™")".
Properties
In a group G with identity e; foranya e G and m,ne Z,
1. a"= ( an)-l - (a-l)n
2. am a.n - am+n
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3. (am)n — amn - (an)m
4. e"=e.

Note that a group G is abelian iff (ab)®* = a *
b* v a, b € G and if G is abelian,

then (ab)"=a"b" v nez
Definition

Let (G, *) be a group and H be a nonempty
subset of G. If (H, *) is a group, then H is called a
subgroup of G.

Note that if ® # H € G and G is a group then
(subgroup tests):

His asub(I]roup of G iff ab, ateHv a,beH
iff ab- eHvabeH

iff ab € H forall a, b € H, for a finite set H.
Definition

Let G be a group. Then Z(G) ={X € G | xy =
yX vV y€ G }is an abelian subgroup of G, called the
centre of the group.

G is abelian iff Z(G) = G.

Definition

Let G be a group, a € G and with a° = e,
identity. The least positive integer n such that a" = e is
called order of a and we write |a] = n.

Thus |a] =n € N means a" = e and a' # e for
anyreN, r<n.

If no such n exists, i.e. a" e foralln e N
then a is said to be of infinite order.

Identity is only group element of order 1.

To find the order of a group element g,
compute the sequence of products g, g°, ¢°, ... until
reach the identity for the first time. The exponent of
this product is the order of g. If the identity never
appears in the sequence, then g has infinite order.
Theorem [2]

Let G be a group with identity e and a € G

with |a] =n € N. Then
1. <a>:{ak|keZ}:{e,a,a2, .

subgroup of G of order n.
2. a“=eiffn|lk (n=|ajandk€e€Z).
TheoremFundamental Theorem of Cyclic Groups

(1]

Every subgroup of a cyclic group is cyclic.
Moreover, if [<a>| = n, then the order of any subgroup
of <a> is a divisor of n; and, for each positive divisor k
of n, the group <a> has exactly one subgroup of order
k- namely <a™*>.

Some Results About Order of Group Elements

Following proposition and results are well
established for more details please refer [2] or any
standard book on group theory.

Proposition

Let a be a group element of order n. Then for

anyk € Z, |[a = —=

ged (n k) ©
Solution
Letgcd (n, k) =d. Thenn =sd, k=td where
seN,teZ andgcd (s, t) = 1.
(a%° = (@")"'=e and for any m € N, with
(@™=e= n=la=sd divideskm=tdms|tm= s
|msinceged (s, t)=2=s|m ie.s £m.

Hence [a¥| =s =2

,a"is a
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From above proposition (0) for ak e <a> =

{e,aa®, .., a"Y,

|a“=niffd=1ie. gcd(n k) =1

ie.a“ isa generator of <a> iff k € U(n) and hence
<a> has ¢(n) generators i.e. elements of order n in
<a>.

1 = 7‘" = =
L Iakl " ged (nk,—l) n=lal
2. a =eiff|]a’ = 1i.e.gcd(n, k)= n iff n]k where |a|
=n.
3. For a positive divisor k of n, [a"% = —2— =
' ' gcd (n,n/k)
n -
E ged (k1) -
ky _ n _ n/niged (n, K) | _—
4. ForanykeZ,|a|—gcd(n’k)—|a | =
I agcd(n,k)l

5. <a*> < <a®> iff <a %M s c < g 99 5 e,
a9l g < g9 9) 5 it ged(n, s) | ged(n, k).<a*>
= <a®> iff gcd(n, s) = ged(n, k).

Result
(l|)<ab'1)k =ba*b? . So (bab™)* = e iff bab™ = e i.e.
a =e.

This proves |bab'1| = |a| for all group elements a
&b.
From this |b(ab)b™| = |ab i.e. |ba| = |ab.
Result
Let G be a group with identity e and a, b € G of
finite order with ab = ba
1. |ab] divides lem(|al, |b])
2. If<a>n <b> = {e} then |ab] = Icm(|al, |b|)
3. If|al, |b| are relatively prime then |ab| = |a||b|.
Proof _
o Let |a] = m, |b| = n where ab = ba i.e. (ab)' =
a'b' VvieZand |ab|=|bal=k , I=lcm(|a], |b]) = lcm(m,
n).
(@) Asm I, n|i so ad=ze=b'=p*
> (ab)=a'b'=ee=e ie.k=|ab|divides| i.e. k]|l
(b) Let <a> n <b>=¢e . Now (ab)k ze=> a‘=b*e
<a> n <b> ={e}
i.e. a"=b™*=e=b"
= m =|aldivides k , n =|b|divides k i.e I= lcm(m, n)
divides k .

k|l &Ik givesk =1
(c) As|a] , |b| are relatively prime , we have <a> n <b>
= {e}

[ l=mr+ns. Vxe<a>n<b>= x=a™ =b"™ for
some m;, N1 € Z
Andsoxt =x™*"™
<b> = {e}
By (b) , |ab| = lcm(|al,|b[) = |a]|b].
Example 2
_sfa b
GL (2, R)={ [C d] /a b, c deRand ad-

bc # 0 } is a non abelian group under matrix

:(aml )mr (bnl)ns —e = <a> N

multiplication with identity | = (1) (1)] . (General linear
group of 2x2 matrices over R)
SL (2,R)= {4 €eGL(2,R)|detA=1} is a

subgroup of GL (2, R) (Special linear group of 2x 2
matrices over R)
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Consider the elements A = [1 0

]ande

[_01 _11] form SL (2, R))

We determine |A|, |B| and |AB].

Now A #1, A%= [‘1) ] [‘1) ‘07]:[‘07 01

A3:[0 20 _1] ° 0]¢| a=[2 0]
[‘1’ _0]—I=>|A|—
M P

Bth,BZ:[_O1 _11] [_01
] [0 1];&' (AB)'[O ;]

]¢|

| =|B|=3.
AB = [0 —1] [_01

[0 1] [(7) ﬂ;ﬁl,...

(AB)" _[0 1‘]¢| VNEN = |AB| = +.

Application

Z(A2) ={(1)} , Z(As) ={(1)}, Z(Ae) ={(1)} etc.

Suppose Z(A4) # {(1)}. As the orders of elements
of Azare 1,2 and 3, So 3 a € Z(As) with |a|]=2or 3

If |a] = 2, then for b € A4 with |b|= 3 we have ab =
ba € As such that |ab| =2 x 3 =6, a contradiction.
Similarly if |a]= 3 then we get an element of order 6 in
A4, a contradiction.

So the supposition Z(As) is nontrivial
subgroup of A4 is wrong. Hence Z(As) = {(1)} is a
trivial subgroup.

Possible orders of elements of As are 1, 2, 3, 5.

If Z(As) # {(1)} then 3 a € Z(As) with |a] € {2, 3,

5}, then we find b € A4 with |b] = {2, 3, 5} — {|a]}, ab =

ba € A4 with |ab| € {6, 10, 15}, a contradiction. Hence
Z(As) ={(1)}

Possible orders of elements of Ag arel,2, 3, 4, 5.

If Z(As) # {(1)} then 3 a € Z(A¢), a # (1) and
3 b € As and so ab = ba € Ag with |abje {6, 12, 10, 15,
20} a contradiction.

Hence Z(As) = {(1)}

Possible orders of elements of A7 are 1, 2, 3,
4,5,6,7.

If Z(A7) # {(1)}, then Fa€ Z(A7),a =+ (1)

And 3 b € A7 and so ab = ba € A7 with |ab|e
{10,14,12,15,21,20,28,30,35,42}a contradiction.Hence
Z(A7) ={(1)}.

Remark

If R is a ring and it satisfies any one of the
following condmon

(a)x =X VXE€ER (b)x =X VXER (c)
x*=x V x € R then R is a commutative. For (a), R is
a Boolean ring.

If G is a group and it satisfies anyone of the
following condmon

(d)x =X VXeG (e)x =X VXEGthen
G is commutative. For (d), G is a trivial group.
Heisenberg Group

1 a b
0 1 c|labc€Ry} is a group
0 0 1

G =

1 00
under matrix multiplication with identity | = (0 1 0).
0 0 1
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This group is called Heisenberg group after
the Nobel Prize winning Physicist Werner Heisenberg,
is intimately related to the Heisenberg Uncertainty
Principle of Quantum Physics.

17 1 1 17 1 2
ForA:(O 1 1),82(0 1 Z)EGwe

0 0 1 0 0 1
have AB # BA;
17 2 5 17 2 4
Since AB:(O 1 3) , BA= (0 1 3) (™
0 0 1 0 0 1

= G is non abelian.

1 a b
For X = (0 1 c) € G, by induction we obtain

0 0 1
1 na nb +M
X'=|y 1 ne . |v¥nen.... (**)
0 O 1
Result

For a group H , if X* = e, identity V x € [
then H is abelian.

Here we can not replace 2 by any number
greater than 2. That is any fixed integer n > 2, we can

obtain a non abelian group K with identity e such that
X" = evVXxeK.
Note

For a prime p, Zp, = {0, 1, ..., p-1} is a field
under addition and multiplication modulo p.
For a prime p,

1 a b
Gp=110 1 c||ab,c €Zp ¢ isagroupunder

0 01
matrix multiplication (in arithmetic modulo p) of order
1 00
p3 with identity | = (0 1 0) and it is non abelian by
0 0 1

().
1 a b
BY(**),forp>2,VX=<0 1 c>er,

0 0 1
1 pa pb+M 1 00
=19 1 pc -(0 1 o>:|,
0 0 1 0 0 1
p(p 1)

identity, since p | = etc. Thus for any

prime p > 2,we can have a non abelian
group Gy, of order p such that x° = 1,identity,v x in G ,.

In group G, , each nonidentity element has
order p and |Z(Gp)| = p

Now consider any integer n > 2, then 4 |n or
n has an odd prime factor.

If 4 | n then G is the nonabelian group of

order 8 such that
1 4a 4b+ 6ac
0 1 4c =|

1 a b
=<0 1 c)er,X4=
00 1 0 0 1

If an odd prime p is a factor of n then Gp is
the nonabelian group of order p such that x" =1,
identity v X € Gy, sincex’ =1v ] € [Jpand p | n.

Proposition
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Let G be a finite group with the property that
every non identity element has prime order and Z(G)
is not trivial. Then every non identity element of G has
the same order.
Proof

Let G be a finite nontrivial group with identity
e,with the property that every non identity element has
prime order and Z(G) # {e}.

Consider any a € Z(G), any b € G with a #e # b.
By hypothesis |a|= p, |b|] = g are primes and

ab=baeG
= |ab] =lem(|al, |b]) = lcm(p, q) is a prime, showing p
= q

Thus vV x € G, x # e, we must have |x| = |a|] =
p, prime.
Note 1

(1) For each prime p, Dy is a dihedral
nonabelian group of order 2p in which one element
isidentity, p-1 elements are of order p and remaining p
elements are of order 2.
= Z(DZp) = {e}

(2) A4 is a nonabelian group of order 12 and
it contains elements of orders 1, 2, 3. So Z(A4) =

{(0)}.
(3) As is a non-abelian group of order 60 and
it contains elements of orders 1, 2, 3 and 5. So Z(As)=

{@}
(4) For n 2 6, Ag has elements of composite

order and Z(An) = {(1)}.
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