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Introduction 
Factor Analysis – An Introduction  

Factor analysis is the name given to a group of statistical 
techniques that can be used to analyze interrelationships among a large 
number of variables and to explain these variables in terms of their 
common underlying dimensions (factors). The approach involves 
condensing the information contained in a number of original variables 
into a smaller set of dimensions (factors) with a minimum loss of 
information In more technical terms Factor analysis addresses the 
problem of analyzing the structure of the interrelationships (correlations) 
among a large number of variables (e.g., test scores, test items, 
questionnaire responses) by defining a set of common underlying 
dimensions, known as factors.  
Objectives 

Factor analysis is used mostly for data reduction purposes : 
1. To get a small set of variables (preferably uncorrelated) from a large 

set of variables (most of which are correlated to each other) 
2. To create indexes with variables that measure similar things 

(conceptually). 
Review of Literature 

Paatero, P. and Tapper, U., 1993. Analysis of different modes of 
factor analysis as least squares fit problems. Chemometrics and intelligent 
Laboratory Systems, 18: 183–194. 

It is shown that each mode of principal component analysis or 
‘factor analysis’ is equivalent to solving a certain least squares problem 
where certain error estimators σij are assumed for the measured data 
matrixXij. Selecting the mode (e.g. Q-mode) implicitly selects a scaling 
transformation as a preparatory step. Each scaling corresponds optimally 
to a certain σ. It is shown that the customary modes (Q-mode and R-
mode) corresponds to such error estimates which do not normally occur in 
chemistry or physics. The best posssible scaling (‘optimal scaling’) and a 
near-optimal scaling are introduced. The Quail Roost II air pollution 
simulation data sets are studied as examples:  

Evolving factor analysis, a new multivariate technique in 
chromatographyMarcel Maeder, Arne Zilian Overlapping peaks are a 
general problem in chromatography. Modern multichannel detectors such 
as the diode-array detector allow multivariate techniques for a 
computational resolution. Evolving factor analysis (Efa) is a recently 
developed method for a completely model-free resolution of overlapping 
peaks into concentration profiles and absorption spectra. Efa is 
successfully tested with real chromatograms. The requirements 
concerning the quality of the measured data are discussed and related to 
the scope and fields of application of Efa.  

Warne, R. T., & Larsen, R. (2014). Evaluating a proposed 
modification of the Guttman rule for determining the number of factors in 
an exploratory factor analysis.Psychological Test and Assessment 
Modeling, 56, 104-123. Ritter, N. (2012). A comparison of distribution-free 
and non-distribution free methods in factor analysis. Paper presented at 
Southwestern Educational Research Association (Sera) Conference 
2012, New Orleans, LA (ED529153). 

Abstract 
‘Factor analysis’ is a useful tool for investigating variable 

relationships for complex concepts such as socioeconomic status, 
dietary patterns, or psychological scales. 

It allows researchers to investigate concepts that are not easily 
measured directly by collapsing a large number of variables into a few 
interpretable underlying factors.  

http://www.sciencedirect.com/science/article/pii/0169743988800510
http://www.sciencedirect.com/science/article/pii/0169743988800510
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Subbarao, C.; Subbarao, N.V.; Chandu, S.N. 
(December 1996). "Characterisation of groundwater 
contamination using factor analysis". Environmental 
Geology 28 (4):175 180. doi:10.1007/s002540050091. 
What is a Factor ? 

The key concept of factor analysis is that 
multiple observed variables have similar patterns of 
responses because of  

For example, people may respond similarly 
to questions about income, education, and 
occupation, which are all associated with the latent 
variable socioeconomic status. 

In every factor analysis, there is the same 
number of factors as there are variables.  Each factor 
captures a certain amount of the overall variance in 
the observed variables, and the factors are always 
listed in order of how much variation they explain. 

The eigen value is a measure of how much 
of the variance of the observed variables a factor 
explains.   

Any factor with an eigenvalue ≥1 explains 
more variance than a single observed variable. 

So if the factor for socioeconomic status had 
an eigenvalue of 2.3 it would explain as much 
variance as 2.3 of the three variables.  This factor, 
which captures most of the variance in those three 
variables, could then be used in other analyses. 

The factors that explain the least amount of 
variance are generally discarded.  Deciding how many 
factors are useful to retain will be the subject of 
another post. 
Two Types of Factor Analysis 
Exploratory 

It is exploratory when you do not have a pre-
defined idea of the structure or how many dimensions 
are in a set of variables. 
Confirmatory  

It is confirmatory when you want to test 
specific hypothesis about the structure or the number 
of dimensions underlying a set of variables (i.e. in 
your data you may think there are two dimensions and 
you want to verify that). 
Basic Idea of Factor Analysis as a Data Reduction 
Method 

Suppose we conducted a study in which we 
measure 100 people's height in inches and 
centimetres. Thus, we would have two variables that 
measure height. If in future studies, we want to 
research, for example, the effect of different nutritional 
food supplements on height, would we continue to 
use both measures? Probably not; height is one 
characteristic of a person, regardless of how it is 
measured. 

Let's now extrapolate from this study to 
something that you might actually do as a researcher. 
Suppose we want to measure people's satisfaction 
with their lives. We design a satisfaction questionnaire 
with various items; among other things we ask our 
subjects how satisfied they are with their hobbies 
(item 1) and how intensely they are pursuing a hobby 
(item 2). Most likely, the responses to the two items 
are highly correlated with each other. Given a high 

correlation between the two items, we can conclude 
that they are quite redundant. 
Combining Two Variables into a Single Factor 

Correlation   between   two    variables    can   be 
summarized using a scatter plot. A regression line can 
then be fitted that represents the ‘best’ summary of 
the linear relationship between the variables. If we 
could define a variable that would approximate the 
regression line in such a plot, then that variable would 
capture most of the ‘essence’ of the two items. 
Subjects' single scores on that new factor, 
represented by the regression line, could then be 
used in future data analyses to represent that 
essence of the two items. In a sense we have 
reduced the two variables to one factor. Note that the 
new factor is actually a linear combination of the two 
variables. 
Principal Components Analysis 

The example described above, combining two 
correlated variables into one factor, illustrates the 
basic idea of factor analysis, or of principal 
components analysis to be precise (we will return to 
this later). If we extend the two-variable example to 
multiple variables, then the computations become 
more involved, but the basic principle of expressing 
two or more variables by a single factor remains the 
same. 
Extracting Principal Components 

We do not want to go into the details about 
thecomputational aspects of principal components 
analysis here, which can be found elsewhere 
(references were provided at the beginning of this 
section). However, basically, the extraction of 
principal components amounts to a variance 
maximizing (varimax) rotation of the original variable 
space. For example, in a scatter plot we can think of 
the regression line as the original X axis, rotated so 
that it approximates the regression line. This type of 
rotation is called variance maximizing because the 
criterion for (goal of) the rotation is to maximize the 
variance (variability) of the "new" variable (factor), 
while minimizing the variance around the new variable 
(see Rotational Strategies). 
Generalizing to the Case of Multiple Variables 

When there are more than two variables, we can 
think of them as defining a ‘space,’ just as two 
variables defined a plane. Thus, when we have three 
variables, we could plot a three- dimensional scatter 
plot, and, again we could fit a plane through the data. 

With more than three variables it becomes 
impossible to illustrate the points in a scatter plot, 
however, the logic of rotating the axes so as to 
maximize the variance of the new factor remains the 
same. 
Multiple Orthogonal Factors 

After we have found the line on which the 
variance is maximal, there remains some variability 
around this line. In principal components analysis, 
after the first factor has been extracted, that is, after 
the first line has been drawn through the data, we 
continue and define another line that maximizes the 
remaining variability, and so on. In this manner, 

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1007%2Fs002540050091
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consecutive factors are extracted. Because each 
consecutive factor is defined to maximize the 
variability that is not captured by the preceding factor, 
consecutive factors are independent of each other. 
Put another way, consecutive factors are uncorrelated 
or orthogonal to each other. 
How many Factors to Extract ?  

Remember   that,   so   far,   we   are  considering 
principal components analysis as a data reduction 
method, that is, as a method for reducing the number 
of variables. The question then is, how many factors 
do we want to extract? Note that as we extract 
consecutive factors, they account for less and less 
variability. The decision of when to stop extracting 
factors basically depends on when there is only very 
little "random" variability left. The nature of this 
decision is arbitrary; however, various guidelines have 
been developed, and they are reviewed in ‘Reviewing 
the Results of a Principal Components 

Analysis under Eigen values and the Number-of-
Factors Problem.’ 
Reviewing the Results of a Principal Components 
Analysis 

Without further ado, let us now look at some 
of the standard results from a principal components 
analysis. To reiterate, we are extracting factors that 
account for less and less variance. To simplify 
matters, you usually start with the correlation matrix, 
where the variances of all variables are equal to 1.0. 
Therefore, the total variance in that matrix is equal to 
the number of variables. For example, if we have 10 
variables each with a variance of 1 then the total 
variability that can potentially be extracted is equal to 
10 times 1. Suppose that in the satisfaction study 
introduced earlier we included 10 items to measure 
different aspects of satisfaction at home and at 
work. The variance accounted for by successive 
factors would be summarized as follows  

Statistical Factor Analysis 
Eigenvalues (factor.sta) 

Extraction: Principal components 

 
Value 

 
Eigen value 

% Total 
Variance 

Cumulative 
Eigen value 

Cumulative 
% 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6.118369 
1.800682 
.472888 
.407996 
.317222 
.293300 
.195808 
.170431 
.137970 
.085334 

61.18369 
18.00682 
4.72888 
4.07996 
3.17222 
2.93300 
1.95808 
1.70431 
1.37970 
.85334 

6.11837 
7.91905 
8.39194 
8.79993 
9.11716 
9.41046 
9.60626 
9.77670 
9.91467 

10.00000 

61.1837 
79.1905 
83.9194 
87.9993 
91.1716 
94.1046 
96.0626 
97.7670 
99.1467 

100.0000 

Eigen Values 
In the second column (Eigenvalue) above, we 

find the variance on the new factors that were 
successively extracted. In the third column, these 
values are expressed as a percent of the total variance 
(in this example, 10). As we can see, factor 1 accounts 
for 61 percent of the variance, factor 2 for 18 percent, 
and so on. As expected, the sum of the eigenvalues is 
equal to the number of variables. The third column 
contains the cumulative variance extracted. The 
variances extracted by the factors are called 
the eigenvalues. This name derives from the 
computational issues involved. 
Eigenvalues and the Number-of-Factors Problem 

Now that we have a measure of how much 
variance each successive factor extracts, we can return 
to the question of how many factors to retain. As 
mentioned earlier, by its nature this is an arbitrary 
decision. However, there are some guidelines that are 
commonly used, and that, in practice, seem to yield the 
best results. 
The Kaiser Criterion 

First, we can retain only factors with eigenvalues 
greater than 1. In essence this is like saying that, unless 
a factor extracts at least as much as the equivalent of 
one original variable, we drop it. This criterion was 
proposed by Kaiser (1960), and is probably the one 

most widely used. In our example above, using this 
criterion, we would retain 2 factors (principal 
components). 
The Scree Test 

A graphical method is the scree test first proposed 
by Cattell (1966). We can plot the eigenvalues shown 
above in a simple line plot. 
Which Criterion to Use  

Both criteria have been studied in detail 
(Browne, 1968; Cattell & Jaspers, 1967; Hakstian, 
Rogers, & Cattell, 1982; Linn, 1968; Tucker, Koopman 
& Linn, 1969). Theoretically, you can evaluate those 
criteria by generating random data based on a 
particular number of factors. You can then see whether 
the number of factors is accurately detected by those 
criteria. Using this general technique, the first method 
(Kaiser Criterion) sometimes retains too many factors, 
while the second technique (scree test) sometimes 
retains too few; however, both do quite well under 
normal conditions, that is, when there are relatively few 
factors and many cases. In practice, an additional 
important aspect is the extent to which a solution is 
interpretable. Therefore, you usually examine several 
solutions with more or fewer factors, and choose the 
one that makes the best "sense." We will discuss this 
issue in the context of factor rotations below. 
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Principal Factors Analysis 

Before we continue to examine the different 
aspects of the typical output from a principal 
components analysis, let us now introduce principal 
factors analysis. Let us return to our satisfaction 
questionnaire example to conceive of another "mental 
model" for factor analysis. We can think of subjects' 
responses as being dependent on two components. 
First, there are some underlying common factors, such 
as the "satisfaction-with-hobbies" factor we looked at 
before. Each item measures some part of this common 
aspect of satisfaction. Second, each item also captures 
a unique aspect of satisfaction that is not addressed by 
any other item. 
Communalities 

If this model is correct, then we should not 
expect that the factors will extract all variance from our 
items; rather, only that proportion that is due to the 
common factors and shared by several items. In the 
language of factor analysis, the proportion of variance 
of a particular item that is due to common factors 
(shared with other items) is 
called communality. Therefore, an additional task facing 
us when applying this model is to estimate the 
communalities for each variable, that is, the proportion 
of variance that each item has in common with other 
items. The proportion of variance that is unique to each 
item is then the respective item's total variance minus 
the communality.  

A common starting point is to use the squared 
multiple correlation of an item with all other items as an 
estimate of the communality. Some authors have 
suggested various iterative "post-solution 
improvements" to the initial multiple regression 
communality estimate; for example, the so-called 
MINRES method (minimum residual factor method; 
Harman & Jones, 1966) will try various modifications to 
the factor loadings with the goal to minimize the 
residual (unexplained) sums of squares. 
Factor Analysis as a Classification Method 

Let us now return to the interpretation of the 
standard results from a factor analysis. We will 
henceforth use the term factor analysis generically to 
encompass both principal components and principal 
factors analysis. Let us assume that we are at the point 
in our analysis where we basically know how many 
factors to extract. We may now want to know the 
meaning of the factors, that is, whether and how we can 
interpret them in a meaningful manner. To illustrate how 
this can be accomplished, let us work "backwards," that 
is, begin with a meaningful structure and then see how 
it is reflected in the results of a factor analysis. Let us 
return to our satisfaction example; shown below is the 
correlation matrix for items pertaining to satisfaction at 
work and items pertaining to satisfaction at home. 

 
 
 
 
 
 

Statistical 
Factor 

Analysis 

Correlations (factor.sta) 
Casewise deletion of MD 

n=100 

Variable 

W
O

R
K

_
1

 

W
O

R
K

_
2

 

W
O

R
K

_
3

 

H
O

M
E

_
1
 

H
O

M
E

_
2
 

H
O

M
E

_
3
 

WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

1.00 
.65 
.65 
.14 
.15 
.14 

.65 
1.00 
.73 
.14 
.18 
.24 

.65 

.73 
1.00 
.16 
.24 
.25 

.14 

.14 

.16 
1.00 
.66 
.59 

.15 

.18 

.24 

.66 
1.00 
.73 

.14 

.24 

.25 

.59 

.73 
1.00 

 The work satisfaction items are highly 
correlated amongst themselves, and the home 
satisfaction items are highly intercorrelated amongst 
themselves. The correlations across these two types of 
items (work satisfaction items with home satisfaction 
items) is comparatively small. It thus seems that there 
are two relatively independent factors reflected in the 
correlation matrix, one related to satisfaction at work, 
the other related to satisfaction at home. 
Factor Loadings 

Let us now perform a principal components 
analysis and look at the two-factor solution. Specifically, 
let us look at the correlations between the variables and 
the two factors (or "new" variables), as they are 
extracted by default; these correlations are also called 
factor loadings. 

 Apparently, the first factor is generally more 
highly correlated with the variables than the second 
factor. This is to be expected because, as previously 
described, these factors are extracted successively and 
will account for less and less variance overall. 
Rotating the Factor Structure 

We could plot the factor loadings shown above 
in a scatter plot. In that plot, each variable is 
represented as a point. In this plot we could rotate the 
axes in any direction without changing the relative 
locations of the points to each other; however, the 
actual coordinates of the points, that is, the factor 
loadings would of course change. In this example, if you 
produce the plot it will be evident that if we were to 
rotate the axes by about 45 degrees we might attain a 

Statistical Factor 
Analysis 

Factor Loadings 
(Unrotated) Principal 

Components 

Variable Factor 1 Factor 2 

WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

.654384 

.715256 

.741688 

.634120 

.706267 

.707446 

.564143 

.541444 

.508212 
-.563123 
-.572658 
-.525602 

Expl.Var 
Prp.Totl 

2.891313 
.481885 

1.791000 
.298500 
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clear pattern of loadings identifying the work satisfaction 
items and the home satisfaction items. 
Rotational Strategies 

There are various rotational strategies that have 
been proposed. The goal of all of these strategies is to 
obtain a clear pattern of loadings, that is, factors that 
are somehow clearly marked by high loadings for some 
variables and low loadings for others. This general 
pattern is also sometimes referred to as simple 
structure (a more formalized definition can be found in 
most standard textbooks). Typical rotational strategies 
are varimax, quartimax, and equamax. 

The idea of the varimax rotation is described 
before (see Extracting Principal Components), and it 
can be applied to this problem as well. As before, we 
want to find a rotation that maximizes the variance on 
the new axes; put another way, we want to obtain a 
pattern of loadings on each factor that is as diverse as 
possible, lending itself to easier interpretation. Below is 
the table of rotated factor loadings. 

Statistical 
Factor 

Analysis 

Factor Loadings (Varimax 
normalized) 

Extraction: Principal 
components 

 

Variable Factor 1 Factor 2 

WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

.862443 

.890267 

.886055 

.062145 

.107230 

.140876 

.051643 

.110351 

.152603 

.845786 

.902913 

.869995 

Expl.Var 
Prp.Totl 

2.356684 
.392781 

2.325629 
.387605 

Interpreting the Factor Structure 
Now the pattern is much clearer. As expected, 

the first factor is marked by high loadings on the work 
satisfaction items, the second factor is marked by high 
loadings on the home satisfaction items. We would thus 
conclude that satisfaction, as measured by our 
questionnaire, is composed of those two aspects; 
hence we have arrived at a classification of the 
variables. 
Oblique Factors 

Some authors (e.g., Cattell & Khanna; Harman, 
1976; Jennrich & Sampson, 1966; Clarkson & Jennrich, 
1988) have discussed in some detail the concept 
of oblique (non-orthogonal) factors, in order to achieve 
more interpretable simple structure. Specifically, 
computational strategies have been developed to rotate 
factors so as to best represent "clusters" of variables, 
without the constraint of orthogonality of factors. 
However, the oblique factors produced by such 
rotations are often not easily interpreted.  

To return to the example discussed above, 
suppose we would have included in the satisfaction 
questionnaire above four items that measured other, 
"miscellaneous" types of satisfaction. Let us assume 
that people's responses to those items were affected 
about equally by their satisfaction at home (Factor 1) 

and at work (Factor 2). An oblique rotation will likely 
produce two correlated factors with less-than- obvious 
meaning, that is, with many cross-loadings. 
1. Hierarchical Factor Analysis 

Instead of computing loadings for often difficult 
to interpret oblique factors, you can use a strategy first 
proposed by Thompson (1951) and Schmid and Leiman 
(1957), which has been elaborated and popularized in 
the detailed discussions by Wherry (1959, 1975, 1984).  

In this strategy, you first identify clusters of 
items and rotate axes through those clusters; next the 
correlations between those (oblique) factors is 
computed, and that correlation matrix of oblique factors 
is further factor-analyzed to yield a set of orthogonal 
factors that divide the variability in the items into that 
due to shared or common variance (secondary factors), 
and unique variance due to the clusters of similar 
variables (items) in the analysis (primary factors). To 
return to the example above, such a hierarchical 
analysis might yield the following factor loadings 

Statistical 
Factor 

Analysis 

Secondary & Primary Factor 
Loadings 

  
 

Factor Second. 1 
Primary 

1 
Primary 

2 

WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

MISCEL_1 
MISCEL_2 
MISCEL_3 
MISCEL_4 

.483178 

.570953 

.565624 

.535812 

.615403 

.586405 

.780488 

.734854 

.776013 

.714183 

.649499 

.687056 

.656790 

.117278 

.079910 

.065512 

.466823 

.464779 

.439010 

.455157 

.187074 

.140627 

.115461 
.630076  
.668880 
.626730 
.280141 
.238512 
.303672 
.228351 

Careful examination of these loadings would 
lead to the following conclusions: 
1. There is a general (secondary) satisfaction factor 

that likely affects all types of satisfaction measured 
by the 10 items; 

2. There appear to be two primary unique areas of 
satisfaction that can best be described as 
satisfaction with work and satisfaction with home 
life. 
Wherry (1984) discusses in great detail examples 
of such hierarchical analyses, and how meaningful 
and interpretable secondary factors can be derived. 

Confirmatory Factor Analysis 
Over the past 15 years, so-called confirmatory 

methods have become increasingly popular (e.g., see 
Jöreskog and Sörbom, 1979). In general, you can 
specify a priori, a pattern of factor loadings for a 
particular number of orthogonal or oblique factors, and 
then test whether the observed correlation matrix can 
be reproduced given these specifications. Confirmatory 
factor analyses can be performed via Structural 
Equation Modeling (SEPATH)  
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Miscellaneous Other Issues and Statistics 
Factor Scores 

We can estimate the actual values of individual 
cases (observations) for the factors. These factor 
scores are particularly useful when you want to perform 
further analyses involving the factors that you 
have identified in the factor analysis. 
Reproduced and Residual Correlations 

An additional check for the appropriateness of 
the respective number of factors that were extracted is 
to compute the correlation matrix that would result if 
those were indeed the only factors. That matrix is called 
the reproduced correlation matrix. To see how this 
matrix deviates from the observed correlation 
matrix, you can compute the difference between the 
two; that matrix is called the matrix 
of residualcorrelations. The residual matrix may point to 
"misfits," that is, to particular correlation coefficients that 
cannot be reproduced appropriately by the current 
number of factors. 
Matrix III-Conditioning 

If, in the correlation matrix there are variables 
that are 100% redundant, then the inverse of the matrix 
cannot be computed. For example, if a variable is the 
sum of two other variables selected for the analysis, 
then the correlation matrix of those variables cannot be 
inverted, and the factor analysis can basically not be 
performed. In practice this happens when you are 
attempting to factor analyze a set of highly 
intercorrelated variables, as it, for example, sometimes 
occurs in correlational research with questionnaires. 
Then you can artificially lower all correlations in the 
correlation matrix by adding a small constant to the 
diagonal of the matrix, and then restandardizing it. This 
procedure will usually yield a matrix that now can be 
inverted and thus factor-analyzed; moreover, the factor 
patterns should not be affected by this procedure. 
However, note that the resulting estimates are not 
exact. 

Discussion and Conclusion 
Applying factors analysis approach, this study 

proposes a theoretical model to investigate main factors 
that contribute to successful information .This study is 
expected to contribute to both academics and 
management practices. The key concept of factor 
analysis is multiple observed variables have similar 
patterns of responses. In every factor analysis there is 
the same number of factors as they are variables.  

Factor analysis is a statistical technique that is 
used to determine the extent to which a group of 
measures share common variance. Factor analysis is 
sometimes termed a "data reduction" technique 
because the method is frequently used to extract a few 
underlying components (or factors) from a large initial 
set of observed variables. It is extensively used in 
psychological research concerned with the construction 
of scales intended to measure attitudes, perceptions, 
motivations, and so forth. Business-related applications 
are numerous and examples include the development 
of scales used to measure customer satisfaction with 
products and employee work attitudes.  

Factor analysis, however, has applicability 
outside of the realm of psychological research. It may 
be used, for example, by financial analysts to identify 
groups of stocks in which prices fluctuate in similar 
ways. And factor analysis often plays a crucial role in 
establishing the validity of employment tests and 
performance appraisal methods, thus helping a firm 
defend itself against employment discrimination. 
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