Synthesis and Antifungal Activity of Hydrazone Derivatives of Some Carbonyl Compounds

Abstract

Ten hydrazones derivatives of carbonyl compounds were obtained and purified to investigate antifungal activity. Minimum inhibitory concentration (MIC) and sensitivity test were used to express the effectiveness of the compound as antifungal agent. MIC values of the compounds were determined by tube dilution techniques. Sensitivity testing was donate determine the compound under specified conditions. It has been done by disk diffusion method. Most of the compounds showed more activity than standard drug ketonazone.

The presence of chloro and bromo group in the phenyl ring enhanced the antifungal activity.

Keyword: Synthesis, Hydrazones, Antifungal Activity. **Introduction**

Hydrazones have been demonstrated to possess, among other, antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular and antitumoral activities. For example, isonicontinoyl hydrazones are antitubercular;4-hydrobenzoic acid [(5-nitro-2-furyl)methylene]-hydrazide (nifuroxazide) is an intestinal antiseptic; 4-fluorobenzoic acid [(nitro-2-furyl) methylene]-hydrazide [1] and 2,3,4-pentanetrione-3-[4-[[(5-nitro-2-furyl)methylene] hydrazino]carbonyl]phenyl]-hydrazone [2],which were synthesized in our department, have antibacterial activity against both Staphylococcus aurens ATCC 29213

and Mycobacterium tuberculosis H37Rv at a concentration of 3.13 μ g/mL. N¹-(4-methoxybenzamido)benzovI]-N²-[5-nitro-3-furyI)methylene]

hydrazine, which was also synthesized in our department [3], demonstrated antibacterial activity. In addition, some of the new hydrazine-hydrazones that we have recently synthesized were active against the same strain of M. tuberculosis H37Rv between the

concentration of 0.78-6.25 µg/mL [4].

Isonicotinic acid hydrazide (isoniazid, INH) have very high in vivo inhibitory activity towards M. tuberculosis H37Rv. Sah and Peoples synthesized INH hydrazide-hydrazones 1 by reacting INH with various aldehydes and ketones. These compounds were reported to have inhibitory activity in mice infected with various strains of M. tuberculosis [5]. They also showed less toxicity in these mice than INH [5,6] Buu-Hoi et al. synthesized some hydrazide-hydrazones that were reported to have lower toxicity than hydrazides because of the blockage of –NH₂ group. These findings further support the growing importance of the synthesis of hydrazide-hydrazones compounds [7].

Materials and Methods

The melting points of the compounds were determined in open capillary tubes on a Thomas Hooker melting point apparatus (Perfit) and are uncorrected. IR spectra were recorded in KBr pellets and JASCO FTIR-5300 infrared spectrophotometer (Japan) ¹H-NMR spectra were determined at 300.40 MH₂ JEOL-AL 300 (Fourier Transform, Japan) (300.40 MHz) JEOL FX 90Q (90 MHz) (Japan) and Mercury Plus Varian (400 MHz) spectrometers with tetramethylsilane as internal standard. **Experimental**

Synthesis of Acetophenone hydrazone (HD1) Procedure

Acetophenone (10 mL, .007 mol) was taken in a round bottom borosil flask and 10 ml hydrazine hydrate was added and 10 ml ethanol solution with 10 ml glacial acetic acid and heated in a distillation unit, then synthesized compound was dried and collected.

S. N. Pandeya

Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, U.P.

S. B. Singh

Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, U.P.

Amit Chatree

Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, U.P. RNI : UPBIL/2013/55327

The (0.005 mol) of benzophenone and 10 ml a round bottom flask of 500 ml and make alkali the solution by adding 10 ml methanol and then neutralized by adding 10 ml glacial acetic acid and heated in a distillation unit upto 1.5 h-2.5 h and synthesized compound was dried and collected.

Procedure

The 10 ml (.006 mol) p-chloroacetophenone solution and 10 ml of hydrazine hydrate were taken in a RBF of 500 ml and make solution alkali by adding 10 ml of methanol and the neutralizing of glacial acetic acid and heating in a distillation unit, synthesized compound were dried and collected.

Synthesis of p-Bromoacetophenone hydrazone

Procedure

The 10 ml (0.004 mol) of p-bromo acetophenone solution and 10 ml of hydrazine hydrate solution was taken in a RBF (500 ml) and 10 ml methanol was then added 40 ml glacial acetic acid and heating in a distillation unit, synthesized compound were dried and collected.

Procedure

The 10 ml (0.005 mol) of m-nitroacetophenone solution and have been taken in a RBF (500 ml) and add 10 ml methanol then 10 ml glacial acetic acid and heating in distillation unit, synthesized compound were dried and collected .

Synthesis of Benzoien hydrazone (HD6)

Procedure

The 10 ml (0.004 mol) of benzoien and 10 ml hydrazine hydrate solution was taken in a RBF (500 ml) and 10 ml methanol and 10 ml glacial acetic acid were added in it. The mixture distillated in a distillation unit and synthesized compound were dried and collected. Synthesis of cyclohexanone hydrazone (HD7)

Procedure

1 gm cyclohexane and 10 ml (0.01 mol) of hydrazine hydrate solution was taken in a RBF (500 ml) and 10 ml methanol and 10 ml of glacial acetic acid was added and mixture was distillated in distillation unit and synthesized compound dried and collected.

Synthesis of carvone hydrazone (HD8)

1 gm carvone and 10 ml (0.006 mol) of hydrazine hydrate were taken in a RBF (500 ml) and 10 ml methanol and 10 ml of glacial acetic acid were added and mixture was heated in a distillation unit and synthesized compound dried and collected. **Synthesis of menthone hydrazone (HD9)**

Procedure

1 gm menthone (0.005 mol) and 10 ml of hydrazine hydrate were taken in a RBF (500 ml) and 10 ml methanol and 10 ml of glacial acetic acid was added mixture was heated in a distillation unit and synthesized compound dried and collected.

Synthesis of camphor hydrazone (HD10)

E: ISSN NO.: 2349 - 980X

Procedure

1 gm camphor (0.006 mol) and 10 ml of hydrazine hydrate were taken in a RBF (500 ml) and 10 ml methanol and 10 ml of glacial acetic acid was added. The mixture was heated in a distillation unit and the synthesized compound dried and collected.

Antifungal activity

Antifungal activity of hydrazones were screened against C. albicans, A. niger, S. cervisiae. All the compounds exhibited antifungal activity against these fungi. Compound HD3, HD4 and HD5 were most potent compound against A. niger and C. albicans compound HD1, HD6 and HD8 was equipotent against A. niger at 50 mg/mL. The compound HD1, HD6, HD8 and HD10 was equipotent against A. niger at 100 mg/mL. Compound HD3, HD4 and HD5 were most active against C. albicans and A. niger.

The compound HD1, HD2, HD6, HD9 and HD10 were least potent against C. albicans at 50 mg/mL dose.

Results and Discussion

The hydrazone derivatives were screened at 100 mg/kg interperitoneally in mice for anticonvulsant activity using procedure described previously.

In the first series of the experiments the compounds were administered by i.p. route and the MES and ScSTY testes were performed for each compound and the evaluation of hydrazones in mice i.p. MES, ScSTY and NT screens are summarized in table 3 along with the literature data on phenytoin.

Mes Test

At doses tested (100 mg/kg) compounds (HD₃, HD₄, HD₅ and HD₆) possessed anti MES activity. Compound HD₃ and HD₄ was further tested for anti MES activity in rats p.o. it possessed 100% activity in 0.5 and in till 24 h at the dose of 100 mg/kg which is better than standard drug phenytoin.

Scsty Test

Compound HD₃ HD₄ HD₅ and HD₉ are active in the ScSTY test. Compound HD₉ is potent in ScSTY test at 4 h at the dose of 100 mg/kg and compound HD₃ HD_4 active at 0.5h at the doses of 100 mg/kg and shows 100% protection. HD_9 is active at 4h at the dose of 100 mg/kg compounds are most active taken phenytoin at the dose of 100 mg/kg.

Neurotoxic screen

Mice were unable to grasps rotored after administration of the all compounds. HD_1 (300, 5h, 4h), HD_2 (300, 5h, 4h), HD_3 (100, 5h, 4h) etc. **References**

- 1. Rollas, S.; Gulerman, N.; Erdeniz, H. Synthesis and atitimicrobial activity of some new hydrazones of 4-fluorobenzoie acid hydrazide and 3-acetyl-2,5disubstituted-1 ,3,4-oxadiazolines. Farinaco 2002,57, 171-174.
- Kuctikgüze G.; Rollas, S.; KucUkgUzel, I; Kiraz, M. Synthesis and Antimycobacterial activity of some coupling products from 4-aminobcnzoic acid hydrazones. Eur. .1. Med. Chem. 1999, 34, 1093-1100.
- Kucükgüzel, .G.; Oruç E.E.; Rollas S.; Sahin, F.; Ozbek, A. Synthesis, Characterization an, biological activity of novel 4-thiazolidinones, 1,3,4oxadiazoles and some related compounds. Eur. .1. Med. Ghen. 2002, 3 197-206.
- Kaymakçioglu K.B.; Oruc, EE.; Unsalan, S.; Kandemirli, F.; Shvets, N.; Rollas, S.; Anatholy, D. Synthesis and characterization of novel hydrazidehydrazones and the study of their structure antituberculos activity. Eur. J. Med. Chem, 2006, 41, 1253-1261.
- Sah, P.P.T.; Peoples, S.A. Isonicotinyl hydrazones as antitubercular agents and derivatives for idendification of aldehydes and ketones. J. Am. Pharm. Assoc. 1954, 43, 513-524.
- Bavin E.M.; Drain, D.J.; Seiler, M.; Seymour, D.E. Some further studies on tuberculostatic compounds. .1. Pharm. Pharmacol. 1954, 4, 844-855.
- Buu-Hoi, P.11.; Xuong, I).; Nam, H.; Binon, F.; Royer, j Tub hydrazides and their derivatives . J. Chem. Soc. 1953, 1358-1364.

Physical Data of Hydrazones

Comp. code	Molecular formula	Molecular weight	melting point	CHN					
				Calculated			Found		
				С	Н	Ν	С	Н	N
HD1	$C_8H_{10}N_2$	135	250	71.64	7.46	20.89	71.45	7.02	20.38
HD2	$C_{13}H_{12}N_2$	196	238	79.59	6.12	14.28	79.49	6.32	14.48
HD3	C ₈ H ₉ N ₂ Cl	168.5	231	56.97	5.34	16.61	56.99	5.44	16.67
HD4	$C_8H_9N_2B_r$	213	230	45.07	4.22	13.14	45.27	4.24	13.34
HD5	$C_8H_9N_3O_2$	179	228	53.63	5.02	23.46	53.65	5.12	23.56
HD6	$C_{14}H_{14}N_2O$	226	245	74.43	6.19	12.38	74.48	6.29	12.48
HD7	C ₆ H ₇ N ₂	93	148	74.41	7.52	30.10	74.44	7.56	30.14
HD8	$C_{10}H_{13}N_2$	161	191	74.53	8.07	17.39	74.43	8.27	17.49
HD9	$C_{10}H_{20}N_2$	168	146	71.42	11.90	16.66	72.15	11.94	16.56
HD10	$C_{10}H_{18}N_2$	166	177	72.28	10.84	16.86	72.38	10.74	16.96

P: ISSN NO.: 2321-290X

RNI : UPBIL/2013/55327

E: ISSN NO.: 2349 - 980X

	Table 2. The Enjoin and openal bala of the Hydrazones benvalives								
S. No.	Compound Name	Compound Code	IR KBr V cm ⁻¹	HNMR (d_6-DMSO) δ ppm					
1.	Acetophenone hydrazone	HD1	3470 (NH) 2998 (CH) 1610 (C=N)	6.1 (S, 2H, NH ₂), 0.9 (S, 3H, CH ₃), 7.3- 7.8 (m, 10H, Ar-H)					
2.	Benzophenone hydrazone	HD2	3480 (NH) 3010(CH) 1640 (C=N)	6.0 (S, 2H, NH ₂), 7.4-7.7 (m, 10H, Ar-H) 7.4-7.7 (m, 10H, Ar-H)					
3.	p-Chloroacetophenone hydrazone	HD3	3472 (NH) 3020 (CH) 1630 (C=N)	6.3 (S, 2H, NH ₂), 0.9 (S, 3H, CH ₃) 4.3(S, 8H,CH ₂), 7.4-7.8 (m, 4H, Ar-H)					
4.	p-Bromoacetophenone hydrazone	HD4	3470 (NH) 3010 (CH) 1624 (C=N)	6.2 (S, 2H, NH ₂), 0.8 (S, 3H, CH ₃) 4.6(S, 8H,CH ₂), 7.3-7.9 (m, 4H, Ar-H)					
5.	M-nitroacetophenone hydrazone	HD5	3458 (NH) 2990 (CH) 1626 (C=N)	6.0 (S, 2H, NH ₂), 0.9 (S, 3H, CH ₃) 6.9(S, 4H,CH ₂), 5.8(S, 4H, CH ₃), 6.9-7.4 (m, 4H, Ar-H)					
6.	Benoin hydrazone	HD6	3460 (NH) 3300(OH) 2992 (CH) 1628 (C=N)	4.0 (S, 1H, OH), 6.1 (S, 2H, NH ₂) 7.3-7.8 (m, 10H, Ar-H)					
7.	Cyclohexanone hydrazone	HD7	3475 (NH) 2980 (CH) 1630 (C=N)	1.3 (m, 10H, 5CH ₂), 5.8 (S, 2H, NH ₂)					
8.	Carvone hydrazone	HD8	3476 (NH) 2996 (CH) 1710 (C=N)	5.9 (S, 2H, NH ₂), 0.9 (S, 6H, 2CH ₃), 2.9 (m, 6H, 2CH ₃)					
9.	Menthone hdyrazone	HD9	3470 (NH) 3020 (CH) 1726(C=N)	5.8 (S, 2H, NH ₂), 0.8 (S, 6H, 2CH ₃) 3.0(m, 4H, 2CH ₂), 3.9(S, 6H, CH), 2.1 (S, 2H, $=$ CH ₂)					
10.	Camphour hydrazone	HD10	3480 (NH) 3033 (CH) 1720 (C=N)	6.2 (S, 2H, NH ₂), 0.9 (S, 6H, 2CH ₃) 2.8(m, 6H, 3CH ₂), 3.1 (S, 6H, CH ₃)					

Table-2: The Physical and Spectral Data of the Hydrazones Derivatives

Table-3: Antifungal Activity of Hydrazones

Compound code	Zone inhibition in mm and dose μ g/ml						
	A. n	iger	C. albicans				
	50 µg/mL	100 µg/mL	50 µg/mL	100 µg/mL			
HD1	15	20	8	12			
HD2	12	14	8	12			
HD3	20	25	18	20			
HD4	22	24	20	22			
HD5	21	20	25	24			
HD6	16	20	10	12			
HD7	10	12	12	15			
HD8	16	20	10	12			
HD9	12	14	7	8			
HD10	13	15	08	07			
Standard drug	15	17	14	17			