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Abstract
This article deals with numerical evaluation of Hankel transform
of order in which an algorithm is developed to compute itν >− 1
numerically. In the present article, we have developed the
algorithm by approximating the rapidly oscillating component

in the expression for Hankel transform by hat basis𝐽
ν
(𝑝𝑟) 

functions. Hat basis functions are defined in the manuscript in
their general form. We further give error analysis and corroborate
our theoretical findings by various numerical illustrations.
1. Introduction
The general Hankel transform pair for Bessel function of order ν 
is defined as [1, 2]

𝐻
ν
[𝑓(𝑟); 𝑝] =

0

∞

∫ 𝑟𝑓(𝑟) 𝐽
ν
(𝑝𝑟) 𝑑𝑟  =  𝐹

ν
(𝑝)   

(1.1)
Hankel Transform is self reciprocal; its inverse is given by
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𝐻
ν

−1 [𝐹
ν
(𝑝); 𝑟] =

0

∞

∫ 𝑝 𝐹
ν
(𝑝) 𝐽

ν
(𝑝𝑟) 𝑑𝑝  =  𝑓(𝑟)   

(1.2)
where is the th-order Bessel function of first kind. 𝐽

ν 
ν

Due to presence of rapidly oscillating component
in the integrand of Hankel transform, analytical𝐽

ν
(𝑝𝑟) 

evaluations of Hankel transforms (Eq.(1.1)) and its inverse
(Eq.(1.2)) involve deep and rigorous mathematical analysis. The
numerical computations of Hankel transform are difficult because
of the oscillatory behaviour of the Bessel functions and infinite
length of the interval involved in it. In the recent past we have
seen that several quality research papers have been published
in which numerical computations are elaborately described for
computation of Hankel transform for both zero- order [3-10] and
high – orders [11-19].

Some of the authors have used a simplistic way of
separating the kernel in the integrand of Hankel transform as a
product of two components. The first component is a slowly
varying component while the second component is highly
oscillating. In our case the slowly varying component is 𝑟 𝑓(𝑟)
where as rapidly oscillating component is . Some of the𝐽

ν
(𝑝𝑟) 

approaches towards the evaluation of HT involve the
approximation of slowly varying component by means of𝑟𝑓(𝑟)
different wavelets or approximating polynomials and very efficient
algorithms have been proposed using the idea. But Singh et al. [
16] first time proposed a new algorithm, by approximating the
rapidly oscillating component using Bernstein polynomials.𝐽

ν
(𝑝𝑟)

The idea of numerical computation of HT by approximation of its
rapidly oscillating component motivated me for the𝐽

ν
(𝑝𝑟)
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present work. In this article, hat basis functions are used to
approximate this rapidly oscillating component which is an
entirely different approach than other available methods, thereby
getting an efficient and stable algorithm for the numerical
evaluation of the HT of order .ν >− 1
2. Hat functions and their associated properties
Hat functions [19] are defined on the domain . These are[0, 1]
continuous functions with shape of hats (Fig 2.1), when plotted
on a two dimensional plane. The interval is divided into[0, 1] 𝑛
subintervals , of equal lengths[𝑖ℎ,  (𝑖 + 1)ℎ],  𝑖 =  0, 1, 2,..., 𝑛 − 1

where . The hat function’s family of first hatℎ ℎ = 1/𝑛 (𝑛 + 1)
functions is defined as follows:

(2.1)

(2.2)

(2.3)

273



Techno World ISBN : 978-93-93166-15-9

From the definition of hat functions it is obvious that

(2.4)

The hat functions are continuous, linearly independent andΨ
𝑖
(𝑡)

are in . Further a function may be approximated𝐿2[0, 1] 𝐿2[0, 1]  
as

𝑓(𝑡) ≃
𝑖=0

𝑖=𝑛

∑ 𝑓
𝑖
Ψ

𝑖
(𝑡) = 𝑓

0
Ψ

0
(𝑡) + 𝑓

1
Ψ

1
(𝑡) + 𝑓

2
Ψ

2
(𝑡) +..... + 𝑓

𝑛
Ψ

𝑛
(𝑡)

(2.5) 
The important aspect of using extended hat functions in the
approximation of function lies in the fact that the coefficients𝑓(𝑡)

in the Eq. (2.5), are given by𝑓
𝑖

, for where .𝑓
𝑖

= 𝑓(𝑖ℎ) 𝑖 = 0, 1, 2, 3..., 𝑛 ℎ = 1/𝑛

(2.6)
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Fig. 2.1. The graph of six hat functions , , , forΨ
0

Ψ
1
, Ψ

2
Ψ

3
Ψ

4
, Ψ

5

𝑛 = 5,  ℎ = 0. 2
3. Algorithm

In order to compute the HT , we divide the
0

∞

∫ 𝑟𝑓(𝑟) 𝐽
ν
(𝑝𝑟) 𝑑𝑟

domain space into two regions and . From(0, ∞) (0, 𝑅) (𝑅, ∞)
physical point of view the input signal decays in the region𝑓(𝑟)

and vanishes in this domain. So, the Hankle transform(𝑅, ∞)

in Eq. (1.1) reduces into𝐻
ν
[𝑓(𝑟); 𝑝] =

0

∞

∫ 𝑟𝑓(𝑟) 𝐽
ν
(𝑝𝑟) 𝑑𝑟  =  𝐹

ν
(𝑝)  

finite domain space form given by

𝐻
ν
 [𝑓(𝑟); 𝑝] =

0

𝑅

∫ 𝑟𝑓(𝑟) 𝐽
ν
(𝑝𝑟) 𝑑𝑟 =  𝐹

ν
(𝑝)

(3.1)
By scaling Eq. (3.1) may be written as

(3.2)𝐹
ν
(𝑝) =

0

1

∫ 𝑟𝑓(𝑟) 𝐽
ν
(𝑝𝑟) 𝑑𝑟

which is known as the finite Hankel transform (FHT). Here we
incorporate our approximation scheme on rapidly oscillating
function by using hat basis functions as given in Eqs.𝐽

ν
(𝑝𝑟)

(2.5) and (2.6), and  we approximate it as

𝐽
ν
(𝑝𝑟) ≃ 𝐽

ν
(0)Ψ

0
(𝑟) + 𝐽

ν
(𝑝ℎ)Ψ

1
(𝑟) + 𝐽

ν
(2𝑝ℎ)Ψ

2
(𝑟) +... + 𝐽

ν
(𝑛𝑝ℎ)Ψ

𝑛
(𝑟)

. (3.3)=
𝑖=0

𝑖=𝑛

∑ 𝐽
ν
(𝑖𝑝ℎ)Ψ

𝑖
(𝑟)

Using the approximation in (3.3), Eq. (3.2) may be written as

𝐹
ν
(𝑝) ≃

0

1

∫ 𝑟𝑓(𝑟) 
𝑖=0

𝑖=𝑛

∑ 𝐽
ν
(𝑖𝑝ℎ)Ψ

𝑖
(𝑟) 𝑑𝑟 =

𝑖=0

𝑖=𝑛

∑ 𝐽
ν
(𝑖𝑝ℎ)

0

1

∫ 𝑟𝑓(𝑟) Ψ
𝑖
(𝑟)𝑑𝑟
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(3.4)
The expression in the Equation (3.4) involves integral

which may be easily calculated because is
0

1

∫ 𝑟𝑓(𝑟) Ψ
𝑖
(𝑟)𝑑𝑟 𝑓(𝑟)

known function and is a linear polynomial .Ψ
𝑖
(𝑟) ∀ 𝑖

4. Error Analysis
In this section we present error estimation, involved in the

computations of and hence in FHT when is𝐽
ν
(𝑝𝑟) 𝐹

ν
(𝑝) 𝐽

ν
(𝑝𝑟)

approximated via hat basis functions. For , from Eq.𝑝 ∈ [0, 𝑃]
(3.3) we have

 𝐽
ν
(𝑝𝑟) ≃

𝑖=0

𝑖=𝑛

∑ 𝐽
ν
(𝑖𝑝ℎ)Ψ

𝑖
(𝑟)

(4.1)

Let the  R.H.S. of Eq. (4.1) is denoted by i.e.𝐽
ν
(𝑝𝑟)

𝐽
ν
(𝑝𝑟) =

𝑖=0

𝑖=𝑛

∑ 𝐽
ν
(𝑖𝑝ℎ)Ψ

𝑖
(𝑟) 

(4.2)

From equation (4.2) and Eq.(2.4), the value of at jth nodal𝐽
ν
(𝑝𝑟)

point is given by𝑟 = 𝑗ℎ,  𝑗 =  0, 1, 2,..., 𝑛

𝐽
ν
(𝑝𝑗ℎ) =

𝑖=0

𝑖=𝑛

∑ 𝐽
ν
(𝑖𝑝ℎ)Ψ

𝑖
(𝑗ℎ) 

. =  𝐽
ν
(𝑗𝑝ℎ)Ψ

𝑗
(𝑗ℎ) + 𝐽

ν
(𝑗𝑝ℎ + 𝑝ℎ)Ψ

𝑗+1
(𝑗ℎ) = 𝐽

ν
(𝑗𝑝ℎ)

Thus the approximation gives exact value of at all𝐽
ν
(𝑝𝑟) 𝐽

ν
(𝑝𝑟)

nodal points .𝑟 = 𝑗ℎ,  𝑗 = 0, 1,..., 𝑛
Further if lies between two consecutive integer multiples of𝑟 ℎ

i.e. , then from Eqs.(4.2) , we𝑗ℎ < 𝑟 < (𝑗 + 1)ℎ,  𝑗 = 0, 1,..., 𝑛𝑟
have
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𝐽
ν
(𝑝𝑟) = 𝐽

ν
(𝑗𝑝ℎ)Ψ

𝑗
(𝑟) +  𝐽

ν
((𝑗 + 1)𝑝ℎ)Ψ

𝑗+1
(𝑟) 

= 𝐽
ν
(𝑗𝑝ℎ) (𝑗+1)ℎ−𝑟

ℎ⎡⎣ ⎤⎦ +  𝐽
ν
(𝑗𝑝ℎ + 𝑝ℎ) 𝑟−𝑗ℎ

ℎ⎡⎣ ⎤⎦
(Using  (2.3-2.4) )

.        (4.3)= 𝐽
ν
(𝑗𝑝ℎ) − 𝑗𝑝ℎ

𝐽
ν
(𝑗𝑝ℎ+𝑝ℎ)−𝐽

ν
(𝑗𝑝ℎ)

𝑝ℎ
⎡⎢⎣

⎤⎥⎦
+ 𝑟𝑝 

𝐽
ν
(𝑗𝑝ℎ+𝑝ℎ)−𝐽

ν
(𝑗𝑝ℎ)

𝑝ℎ
⎡⎢⎣

⎤⎥⎦
As , the expression in R.H.S. of Eq.(4.3) may be written asℎ → 0

(4.4)𝐽
ν
(𝑝𝑟) ≃ 𝐽

ν
(𝑗𝑝ℎ) − 𝑗𝑝ℎ𝐽'

ν
(𝑗𝑝ℎ) + 𝑝𝑟 𝐽'

ν
(𝑗𝑝ℎ) 

By expanding in form of Taylor’s series in the powers of𝐽
ν
(𝑝𝑟)

, we have(𝑝𝑟 − 𝑗𝑝ℎ)

, (4.5)𝐽
ν
(𝑝𝑟) =

𝑘=0

∞

∑ (𝑝𝑟−𝑗𝑝ℎ)𝑘

𝑘! 𝐽
ν

(𝑘)(𝑗𝑝ℎ) 

where denotes the order derivative of .𝐽
ν

(𝑘) 𝑘𝑡ℎ 𝐽
ν

Using Eqs.(4.4) and (4.5), the error between exact and
approximate values of is given by𝐽

ν
(𝑝𝑟)

𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟) =  

𝑘=2

∞

∑ (𝑝𝑟−𝑗𝑝ℎ)𝑘

𝑘! 𝐽
ν

(𝑘)(𝑗𝑝ℎ) 

= (𝑝𝑟−𝑗𝑝ℎ)𝑘

2! 𝐽
ν

(2)(𝑗𝑝ℎ) + 𝑂(𝑝𝑟 − 𝑝𝑗ℎ)3

(4.6)
Since so . Replacing𝑝𝑗ℎ < 𝑝𝑟 < 𝑝(𝑗 + 1)ℎ (𝑝𝑟 − 𝑝𝑗ℎ) < 𝑝ℎ ℎ
by and using Eq.(4.6), we have1/𝑛

𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟) ≤  𝑝2

2𝑛2  𝐽
ν

''(𝑗𝑝ℎ) + 𝑂 𝑝3

𝑛3( ) 

(4.7)
Thus

(4.8) 𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟)|||

||| ≤  𝑝2

2𝑛2  𝐽
ν

''(𝑗𝑝ℎ)|||
||| + 𝑂 𝑝3

𝑛3( )
As we know that

 𝐽
ν

'(𝑥) =  1
2 𝐽

ν−1
(𝑥) −  𝐽

ν+1
(𝑥)[ ]
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so for a constant , we haveλ

𝐽
ν

'(λ𝑥) =  λ
2 𝐽

ν−1
(λ𝑥) −  𝐽

ν+1
(λ𝑥)[ ]

and thus

𝐽
ν

"(λ𝑥) =  λ2

4 𝐽
ν−2

(λ𝑥) − 2𝐽
ν
(λ𝑥) +  𝐽

ν+2
(λ𝑥)[ ]

(4.9)
Using Eq. (4.9) in (4.8), for , Eq (4.8) may be rewritten asλ = 𝑗ℎ

𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟)|||

||| ≤  𝑗2ℎ2𝑝
2

8𝑛2  𝐽
ν−2

(𝑝𝑗ℎ) − 2𝐽
ν
(𝑗𝑝ℎ) +  𝐽

ν+2
(𝑗𝑝ℎ)| |

(4.10)+ 𝑂 𝑝3

𝑛3( )
Since ,  so from Eq. (4.10), we get𝐽

ν
(𝑝𝑗ℎ) ≤ 1

.𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟)|||

||| ≤  𝑗2ℎ2𝑝
2

2𝑛2 + 𝑂 𝑝3

𝑛3( )
(4.11)
If we denote the approximate finite Hankel transform of by𝑓(𝑟)

i.e. , then Eq.(4.11) is used to𝐹(𝑟) 𝐹(𝑟) =
0

1

∫ 𝑟 𝑓(𝑟) 𝐽
ν
(𝑝𝑟) 𝑑𝑟

obtain the absolute error between exact FHT andε
𝑛
(𝑝) 𝐹(𝑟)

approximate FHT , as follows:𝐹(𝑟)

ε
𝑛
(𝑝) = 𝐹(𝑟) − 𝐹(𝑟)|||

||| =
0

1

∫ 𝑟 𝑓(𝑟)(𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟))𝑑𝑟

||||

||||

=
𝑗=0

𝑛−1

∑
𝑗ℎ

(𝑗+1)ℎ

∫ 𝑟 𝑓(𝑟)(𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟))𝑑𝑟

||||

||||

≤  
𝑗=0

𝑛−1

∑
𝑗ℎ

(𝑗+1)ℎ

∫ 𝑟 𝑓(𝑟)| | 𝐽
ν
(𝑝𝑟) − 𝐽

ν
(𝑝𝑟)|||

|||𝑑𝑟

               ≤  
𝑗=0

𝑛−1

∑ 𝑗2ℎ2𝑝
2

2𝑛2 + 𝑂 𝑝3

𝑛3( )⎡
⎢
⎣

⎤
⎥
⎦ 𝑗ℎ

(𝑗+1)ℎ

∫ 𝑟 𝑓(𝑟)| |𝑑𝑟

(4.12)
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(Using Eq.(4.11))

In all the numerical illustrations thus from (4.12)𝑓(𝑟)| | ≤ 1

ε
𝑛
(𝑝) ≤  

𝑗=0

𝑛−1

∑ 𝑗2ℎ2𝑝
2

2𝑛2 + 𝑂 𝑝3

𝑛3( )⎡
⎢
⎣

⎤
⎥
⎦ 𝑗ℎ

(𝑗+1)ℎ

∫ 𝑟 𝑑𝑟

 =
𝑗=0

𝑛−1

∑ 𝑗2𝑝
2

2𝑛4 + 𝑂 𝑝3

𝑛3( )⎡
⎢
⎣

⎤
⎥
⎦
 𝑗 + 1

2( ) ℎ2

=
𝑗=0

𝑛−1

∑
𝑗2 𝑗+ 1

2( )𝑝
2

2𝑛6

⎡⎢⎢⎣

⎤⎥⎥⎦
 +

𝑗=0

𝑛−1

∑ 𝑂 𝑝3

𝑛3( ) 𝑗 + 1
2( ) ℎ2

=
𝑗=0

𝑛−1

∑
𝑗2 𝑗+ 1

2( )𝑝
2

2𝑛6

⎡⎢⎢⎣

⎤⎥⎥⎦
 + 𝑂 𝑝3

𝑛3( ) ℎ2

𝑗=0

𝑛−1

∑ 𝑗 + 1
2( )

= 𝑝2

2𝑛6
𝑗=0

𝑛−1

∑  𝑗2 𝑗 + 1
2( ) + 𝑂 𝑝3

𝑛3( )
(4.13)= (1−1/𝑛) 3−(1/𝑛)−(1/𝑛2)[ ]𝑝

2

24𝑛2  + 𝑂 𝑝3

𝑛3( )
Thus we may state the following theorem:
Theorem: For input signal with absolute value lying in𝑓(𝑟) (0, 1]

, the absolute error between exact FHT andε
𝑛
(𝑝) 𝐹(𝑟)

approximate FHT is of order where the symbols used𝐹(𝑟) 𝑂 𝑝3

𝑛3( )
are as above.
5. Numerical Illustrations:

The test problems included in this manuscript are solved
with and without random perturbations (noises) to illustrate the
efficiency and stability of the proposed algorithm. The graphs are
sketched for different values of step sizes. The terms ,𝐸

0
(𝑝)

𝐸
1
(𝑝)

279



Techno World ISBN : 978-93-93166-15-9

and and denote errors between exact and approximate HT𝐸
2
(𝑝)

with noise terms and respectively. In the text boxes ofα
0
, α

1
 α

2

the figures , and have been denoted by𝐸
0
(𝑝) 𝐸

1
(𝑝) 𝐸

2
(𝑝) 𝐸0(𝑝)

and respectively. The parameter ranges between𝐸1(𝑝)  𝐸2(𝑝) 𝑝
0 to 30.
Example 1: A very important, and often used function, is the Circ
function that can be defined piecewise as

according as or𝐶𝑖𝑟𝑐 (𝑟/𝑎) = 0 𝑜𝑟 1 𝑟 ≤ 𝑎 𝑟 > 𝑎
(5.1)
respectively.

The zeroth-order HT of is the Sombrero function [16],𝐶𝑖𝑟𝑐 (𝑟/𝑎)
that will be written as with the following analytical𝑆

0
(𝑝)

expression .𝑆
0
(𝑝) = 𝑎2 𝐽

1
(𝑎𝑝)

𝑎𝑝

Eq. (3.4) is used to obtain the finite HT (p) of , for𝐹
0

𝐶𝑖𝑟𝑐 (𝑟/𝑎)

, as follows:𝑎 = 1

𝐹
0
(𝑝) ≃

0

1

∫ 𝑟 𝐶𝑖𝑟𝑐(𝑟) 
𝑖=0

𝑛

∑  𝐽
0
(𝑝𝑖ℎ) Ψ

𝑖
(𝑟)𝑑𝑟 =

𝑖=0

𝑛

∑  𝐽
0
(𝑝𝑖ℎ) 

0

1

∫ 𝑟Ψ
𝑖
𝑖

(𝑟)𝑑𝑟

(5.2)
Using Eqs.(2.1-2.3), Eq. (5.2) becomes

𝐹
0
(𝑝) ≃ 𝐽

0
(0)

0

ℎ

∫ 𝑟 ℎ−𝑟
ℎ  𝑑𝑟 +

𝑖=0

𝑛

∑  𝐽
0
(𝑝𝑖ℎ)

(𝑖−1)ℎ

𝑖ℎ

∫ 𝑟 𝑟−(𝑖−1)ℎ
ℎ( )𝑑𝑟 +

𝑖ℎ

(𝑖+1)ℎ

∫ 𝑟 (𝑖+1)ℎ−𝑟
ℎ( )𝑑𝑟⎡⎢⎢⎣

⎤⎥⎥⎦
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.              (5.3)+ 𝐽
0
(𝑝)

1−ℎ

1

∫ 𝑟 𝑟−(𝑖−1)ℎ
ℎ( )𝑑𝑟

The integrals involved in Eq. (5.3) are easily calculated and the

value of (p) can be obtained for different . The exact Hankel𝐹
0

𝑝

transforms and approximate Hankel transforms of 𝐶𝑖𝑟𝑐(𝑟) 
function are denoted by and respectively. In the text𝑆

0
(𝑝) 𝐻

0
(𝑝)

box of Fig.5.1, exact and approximate zeroth-order Hankel
transforms have been represented by and𝑆0(𝑝) 𝐻0(𝑝)
respectively. In Fig. 5.2, the error between exact HT and
approximate HT (with zero noise) is shown for . The𝑛 = 10000

maximum error is of order . The graph in this figure also10−9

justifies the error analysis done in Section - 4 which
characterises the increasing nature of the error with . Fig. 5.3𝑝
compares the different errors (with and without perturbations) in
calculating finite HT.

Fig5.1. Exact HT and approximate HT for in𝑆
0
(𝑝) 𝐻

0
(𝑝) 𝑛 = 100

Ex. 1
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Fig5.2. Error with zero noise for in Ex1.𝐸
0
(𝑝) 𝑛 = 10000

Fig 5.3. , , for in Ex. 1𝐸
0
(𝑝) 𝐸

1
(𝑝) 𝐸

2
(𝑝) 𝑛 = 100
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Example 2. Consider the function 𝑓(𝑟) = 1 − 𝑟2( ),  0 ≤ 𝑟 ≤ 1
given in [17], for which

(6.4)
Numerical evaluation of has been achieved by Baraket et𝐹

1
(𝑝)

al. [11], by using Filon quadrature philosophy but again the
associated error is appreciable for . The exact HT for the𝑝 < 1
example is and approximate HT is denoted by . Fig.𝐹

1
(𝑝) 𝐻

1
(𝑝)

5.4 shows the comparison between exact and approximate
Hankel transform in which and have been denoted by𝐹

1
(𝑝) 𝐻

1
(𝑝)

and respectively. Fig. 5.5 depicts the graph of error𝐹1(𝑝) 𝐻1(𝑝)
for . In Fig. 7, the errors , ,𝐸

0
(𝑝) 𝑛 = 10000 𝐸

0
(𝑝) 𝐸

1
(𝑝) 𝐸

2
(𝑝) 

for are plotted.𝑛 = 100 

Fig 5.4. Comparison between and for , Ex.2𝐻
1
(𝑝) 𝐹

1
(𝑝) 𝑛 = 100
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Fig 5.6. Error for in Ex. 2𝐸
0
(𝑝) 𝑛 = 10000

Fig 5.7. , , for in Ex. 2𝐸
0
(𝑝) 𝐸

1
(𝑝),  𝐸

2
(𝑝) 𝑛 = 10000
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Example 3. Let , then𝑓(𝑟) = 𝑟ν 𝑠𝑖𝑛  π 𝑟2

4( ) ,  0 ≤ 𝑟 < 1

𝐹
ν
(𝑝) = 1

2
π
2( )−ν−1

𝑝ν 𝑈
ν+1

π
2 , 𝑝( ) − 𝑈

ν+2
π
2 , 𝑝( )⎡⎢⎣

⎤⎥⎦
(6.7)
(obtained from [16, p.34,  Eq.(16)] by putting ),𝑎 = π/4,  𝑏 = 1
where is a Lommel’s function [16] of two variables,𝑈

ν
𝑤, 𝑝( )

given by

𝑈
ν

𝑤, 𝑝( ) = 1
2 𝑝 𝑟=0

𝑀

∑ (− 1)𝑟 π
2𝑝( )2𝑟⎡⎢⎢⎣

⎤⎥⎥⎦
 𝐽

ν+2𝑟+1
(𝑝) − π

2𝑝( ) 𝐽
ν+2𝑟+2

(𝑝)( )

as .𝑀 → ∞
We take and show comparison between exact HTν = 3/2

and approximate HT in Fig. 5.8.  Fig. 5.9 shows𝐹
3/2

(𝑝) 𝐻
3/2

(𝑝)

the error with zero noise for .𝐸
0
(𝑝) 𝑛 = 10000

Fig 5.8. , for in Ex. 3𝐹
3/2

(𝑝) 𝐻
3/2

(𝑝) 𝑛 = 100
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Fig 5.9. Error with zero noise for (Ex.3)𝐸
0
(𝑝) 𝑛 = 10000

Fig. 17. , , ,, for in Ex. 3𝐸
0
(𝑝) 𝐸

1
(𝑝) 𝐸

2
(𝑝) 𝑛 = 100

Conclusions

286



Techno World ISBN : 978-93-93166-15-9

In the present manuscript, the application and scope of
Hat functions have been extended to develop an efficient
algorithm for numerical evaluation of finite Hankel transform,
together with error analysis. The response shown by the
algorithm is very satisfactory. The results are matched with some
known problems with better accuracy.
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