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Introduction 
 In real fluids, the viscous stresses in turbulent motions will cause 
the kinetic energy of the motions to dissipate in heat. If there are no 
external effects present to supply energy continuously for maintaining the 
turbulent motions, these will decay in the course of time. An interesting 
problem to investigate is how the flow pattern and the relations between 
velocities change during decay. Since these relations can be described by 
the tensor (Qij) A, B of the double velocity correlations, we have to consider 
the change in this tensor with time. Batchelor (1951) obtained an 
expression for the velocity, covariance between the fluctuating velocities at 
two different points, a distance r apart in a field of homogeneous isotropic 
turbulence. Jain (1962) using Chandrasekhar’s (1955) new theory of 
turbulence, derived expressions for pressure and acceleration covariance 
in ordinary turbulence. A good deal of theoretical studies on magneto 
hydrodynamic turbulence has been made during last fifteen years. Some 
authors (see for instance, Ohji, 1964) considered MHD turbulence in the 
absence of an external magnetic field in order to gain a basic 
understanding of a self-adjusting process of the mechanical and magnetic 
modes of turbulence. In a variety of astrophysical and geophysical 
problems, however, it is often the case that a certain magnetic field such as 
the cosmic magnetic field, the geomagnetic field, etc. is imposed on a 
turbulent motion of a conducting fluid. The essential effect of the presence 
of an imposed magnetic field is that the mechanical and magnetic modes of 
turbulence interact not only with each other through the self-adjusting 
processes but also with the external magnetic field. If the external magnetic 
field is very strong, the effect of the latter interaction will predominate that 
of the self-adjusting processes. Ohji (1964) presented a first order theory 
for turbulence of an electrically conducting fluid in the presence of a 
uniform magnetic field, which is so strong that the nonlinear mechanism as 
well as the dissipation when compared with the external coupling terms are 
of minor importance. He discussed the effect of a very strong uniform 
magnetic field on incompressible MHD turbulence in the presence of a 
constant angular velocity and Hall effect. 
 Saffman (1962) observed the effect of dust particles on the 
stability of laminar flow of an incompressible fluid with constant mass 
concentration of dust particles. He has given the equations describing the 
motion of a fluid containing small dust particles. Using the equations given 
by Saffman, Michael and Miller (1966) has discussed the motion of dusty 
gas occupying the semi-infinite space above a rigid plane boundary. The 
behaviour of discrete particles in a turbulent flow is of great interest to 
many branches of technology, particularly if there is a substantial difference 
in density between the particles and the fluid. The combined flow of solids 
and fluids or of atomized liquids and gases (flow of mist) is encountered for 
instance in one or more of the technical applications like gas and liquid 
cleaners (e.g. cyclone separator), pneumatic conveying, coal washing, and 
mineral dressing, chemical reactors based on the fluidized solids system. 
The behaviour of dust particles in a turbulent fluid depends largely. 
1. On the concentration of the particles 
2. On the size of the particles with respect to the scale of turbulence fluid.  
 At great concentration there is interaction between the particles 
through collisions and through effects on the flow of the fluid in the 
neighbourhood of the particles. At extremely high concentrations near that 
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of maximum packing of the particles the turbulence 
may be even ‘frozen’ a term introduced by Bagnold 
(1954) to denote a condition of almost entirely 
damped turbulent motion. When the concentration is 
very low we may neglect interference of the particles 
and regard each particle being alone in the turbulent 
flow field. Then has made first extensive theoretical 
study on the motion of a very small particle 
suspended in a turbulent fluid.  
 In this topic we have derived the expressions 
for velocity covariance and solution has been 
obtained in terms of defining scalars. Further the 
effect of very strong uniform magnetic field is 
discussed. It has been shown that the solutions of the 
spectrum equations so obtained are of oscillatory 
nature.  
Basic Equations 

 The equations of motion and of continuity of 
an incompressible viscous dusty fluid are given by   
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 where 
s

3

ss  R   4/3   m   is the mass of a 

single spherical dust particle of radius  
 

vss  R  6 k  ;R   by the Stoke’s drag formula;            

f = kN/ has dimensions of frequency; N = constant 

number density of dust particle; s = constant density 

of the material in dust particles; vi (x t) are dust 
velocity component; (ui (x, t)), are the fluid velocity 
components.  
    2. Discussion of the Problem 

 Let ui denote the component of velocity at 

point 
'

ix  time t' then 
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Multiplying (2.1) by 
"

ju  and (2.2) by 
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iu  and averaging 
the resulting equation we have 
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We assume that the particle are non conducting and 
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instantaneous velocities at one point remain 
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taking the average and using the condition of 
homogeneity we have 
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 Equations (2.7) and (2.8) give the 
expressions for rate of change of defining scalars of 
velocity covariance in terms of defining scalars in 
presence of corriolis force.  
The Effect of a Very Strong Magnetic Field 

 If a uniform strong magnetic field be imposed 
then the equations of motion can be written Ohji 
(1964) as: 
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 where RH and RmH stand for the Reynolds 
number and the magnetic Reynolds number with 
respect to the mean Alfven speed H. If therefore, the 
imposed magnetic field is sufficiently strong 1/RH and 
1/RmH are small in comparison with 1 and hence eqn. 
(3. 1) becomes 
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Therefore, Eqn. (3.5) becomes 
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 The Fourier transform of various correlation 
tensors appearing in equations (3.6), (3.7), (3.8) and 
(3.9) are expressed as spectral tensors in the 
following form. 
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 The spectral equations in the present context 
then becomes 
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where  denotes the cosine of the angle between k 

and H,  i.e. k H = Kk.Hk. 

 A remarkable feature of equations (3.12), 
(3.13), (3.14) and (3.15) is that their solutions are of 
oscillatory nature, such oscillations are caused and 
maintained by the imposed magnetic field which play 
an analogous role to the primary field of a 
conventional electric dynamo or motor.  
 For axis symmetry turbulence, we can put 
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where S is a unit vector in the direction of H 
and 
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While the defining scalars (2) ……, , (2) are functions of 

k and k as well as time t, it follows from the 
homogeneity conditions that 
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for skew tensors, under these conditions the solutions 
are easily transformed in to a scalar form. The result 

is simply to replace ij (k,t) by the corresponding 

scalars (1,2) (k, k, t)  and so on. 
 Equations (3.12), (3. 13), (3. 14) and (3. 15) in 

this case are written as 
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where )2()1((2)(1)(2)(1)(2))1( , , , , , ,  ,   are 

defining scalars. 
 The effect of a strong external magnetic field 
on MHD turbulence has been discussed in a largely 
simplified form. The basic assumption is that if an 
imposed field is strong enough both the triple 
correlation terms and the dissipation terms will be of 
little significance. In other words, the reaction time of 
the external magnetic field has been assumed 
sufficiently small compared with the characteristic 
time scale of the decay process. When the external 
fields is steady and uniform, in particular, the solutions 
are very simple but appear to display some essential 
features of the magnetohydro-dynamic response of 
the turbulence. A point of future interest may perhaps 
be to elucidate the effect of the non steady or non 
uniform external fields as well as that of the non-linear 
energy-transfer mechanism.  
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