|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Synthetic and Structural Investigations of Ni(II) Complexes of Tridentate Ligands | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Paper Id :
15770 Submission Date :
2022-02-14 Acceptance Date :
2022-02-20 Publication Date :
2022-02-25
This is an open-access research paper/article distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For verification of this paper, please visit on
http://www.socialresearchfoundation.com/researchtimes.php#8
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
Using tridentate ligands, Ni (II) complexes of the composition NiL1X2 and NiL2X2 (where L1 = p-hydroxybenzylidene-2-aminothiazole, L2 = p-hydroxybenzylidene-2-amino-6-methylpyridine and X = SO4-, CH3COO- and NO3-) have been prepared. Ligands were characterized with the help of elemental analyses, IR, and mass spectral studies while complexes were characterized on the basis of elemental analyses, magnetic susceptibility measurements, IR and NSH treatment. The studies showed that the complexes are of high spin type having magnetic moment corresponding to three unpaired electrons and indicating distorted octahedral environment around the central metal ion.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Keywords | Mannich bases, Ni(II) Complexes, Magnetic Moment, IR, Electronic Spectral Studies and NSH Treatment. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction |
Mannich bases have played a predominant and valuable role in the development of coordination as well as medicinal chemistry. Mannich bases include various types of compounds and rapid development related mainly with these compounds aroused much interest and activity in the field of coordination chemistry, with the result that numerous interesting conclusions have been reached in recent years.
Metal complexes of Mannich bases have been studied[1-3] extensively in recent years due to the selectivity and sensitivity of the ligands towards various metal ions. To our knowledge, Mannich reaction is a three-component condensation reaction consisting of active hydrogen containing compound, formaldehyde and a secondary amine[4]. Mannich bases form several complexes with transition metals due to the presence of lone pair of electrons on nitrogen atoms. Metal complexes of Mannich bases have played a central role in the development of coordination chemistry and have many applications in variours. Nickel (II) complexes of N, O and S donor ligands have drawn much attention in the last decade because of their immense biological applications5-6. Therefore, it was thought to synthesize some nickel (II) complexes of Mannich bases prepared from p-hydroxybenzaldehyde, 2-aminothiazole and 2-amino-6-methylpyridine.The antimicrobial studies of ligands and their nickel (II) complexes are under study.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective of study | Synthetic and Structural Investigations of Ni(II) Complexes of Tridentate Ligands |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Review of Literature | Nickel is the twenty-second most abundant element by weight in the earth’s crust. It is silvery-white, hard, malleable and ductile metal that takes on a high polish. It occurs usually in combination with sulphur and iron in pentlandite, with sulphur in millerite, with arsenic in the mineral nickeline and with arsenic and sulphur in nickel glance[7]. Alex Constedt of Sweden first discovered nickel in 1751. It has melting point of 1453oC, boiling point of 2913oC and density of 8.902 gcm-3.
Nickel (II) ion has a 3d8 valence electron configuration. This give rise to the Russel-Saunders terms (in order of increasing energy) 3F, 1D, 3P, 1G, 1S. The triplet term 3F4 represents the electronic ground state of the gaseous ion and triplet terms derived from this usually represent the ground state of nickel (II) compounds. The bonding in transition metal complexes2 is considered to be electrostatic (ion-ion or ion-dipole), and if a point charge (or a point charge-point dipole) model is used, relative energies of the d-orbitals of the central metal ion can be calculated. This lead to the splitting of d-orbitals for an octahedral complex with the dx2-y2 and dz2 (eg) more unstable than the dxy, dyz and dzx (t2g) orbitals.
Sabastigam and coworkers[9] have reported the electronic spectra of nickel (II) complexes of Mannich bases derived from piperidinomethyl urea, exhibiting three bands at ~ 10,000 cm-1 due to 3A2g → 3T2g (ν1), ~ 16,000 cm-1 due to 3A2g → 3T1g (F) (ν2), and ~ 27,000 cm-1 due to 3A2g → 3T2g (P) (ν3) indicating the octahedral nature of nickel (II) complexes. Some nickel (II) complexes of Mannich base N,N-bis (morpholinobenzyl)urea (L) were synthesized and characterized by Prabhu and coworkers[10].
Halli et. al.[11] prepared some octahedral complexes of nickel (II) ion. The symmetry of the complexes was confirmed on the basis of magnetic measurements, IR and electronic spectral studies. Nickel (II) complexes of bifunctional bis(piclolyl)amino ligand derived from glycine were reported by Niklas and coworkers[12].
Sharma[13] have synthesized nickel (II) and cobalt (II) complexes with some new fused heterocycles. On the basis of magnetic moment and electronic spectral data, they concluded that these complexes possess high spin octahedral geometry. Mane and Shirodhkar[14] synthesized nickel (II) complexes with bidentate ligands. They calculated various ligand field parameters and on the basis of these parameters they reported the octahedral geometry for nickel (II) complexes.
Mohanan and Murukan[15] synthesized the complexes of manganese (II), iron (II), cobalt (II), nickel (II), copper (II) and zinc (II) with bishydrazone and characterized them with the help of elemental analysis, molar conductance, magnetic susceptibility, UV-visible, IR and NMR spectral studies. They have reported tetrahedral geometry for nickel (II) complexes.
Recently, a number of research papers[16-17] have reported on nickel (II) complexes with ON/ONS/ONNO/NS type donor system. The electronic spectral data were suggestive of distorted octahedral geometry of these complexes.
In this chapter, the structure and stereochemistry of nickel (II) complexes with Mannich base derived from p-hydroxybenzaldehyde and 2-aminothiazole/2-amino-6-methylpyridine have been discussed. Various ligand and crystal field parameters have been calculated with the help of electronic spectra and Normalized Spherical Harmonic (NSH) Hamiltonian theory[17] have been used to assign the structure of the synthesized complexes. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main Text |
Proposed structures of MB1 and MB2 Experimental All the chemicals used were of A.R. grade. The purity of these compounds was checked by thin layer chromatography (TLC). The spots were developed exposing the slides in iodine vapor chamber. Synthesis of Ligands (a)
Preparation of Schiff Bases (i)
Preparation of p-hydroxybenzylidene-2-iminothiazole (SB1) 1.22gm
4-Hydroxybenzaldehyde and 1.0gm 2-aminothiazole were dissolved in 20ml ethanol
and refluxed for 14 hours over water bath using water condenser. The obtained
solution was allowed to cool at room temperature. The concentrated solution was
cooled in refrigerator and obtained product was filtered, washed with ether and
dried under reduced pressure over anhydrous calcium chloride. (ii)
Preparation of
p-hydroxybenzylidene-2-imino-6-methylpyridine (SB2): 1.22gm
4-Hydroxybenzaldehyde in ethanol was mixed with an ethanolic solution of 1ml of
2-amino-6-methylpyridine (dissolved in 20ml ethanol). Mixture was refluxed for
12 hours over a water bath using water condenser. The obtained solution was
allowed to cool at room temperature and the concentrated solution was cooled in
refrigerator for 24 hours. The obtained product was filtered, washed with
acetone several times and followed by ether. It was recrystallized with
absolute alcohol and dried under reduced pressure over anhydrous calcium
chloride. (b) Preparation of Mannich Bases (i) Preparation of p-hydroxybenzylidene-2-aminothiazole (MB1)
derived from p-hydroxybenzylidene-2-iminothiazole (SB1): The titled Mannich Base was prepared by
stirring p-hydroxybenzylidine-2-iminothiazole (2.04 gm) with 20ml of methanol.
The product is then cooled to 0oC and sodiumborohydride (0.2gm) was
added over a period of 1 hour in three or four instalments. Slowly the
temperature was raised to room temperature. A dark brown solution resulted and
then solvent was slowly evaporated. A solid colored powder was obtained. It was
then washed with ethanol and dried in air, a deep brown colored crystals were
obtained. The mass spectra of the ligand exhibits m/z
values: 205, 189, 107, 122, 113 and 99 assignable to C10H10N2OS,
C10H10N2S, C7H7O, C7H8NO,
C4H5N2S and C3H3N2S
molecular ion. (ii) Preparation of
p-hydroxybenzylidene-2-amino-6-methylpyridine (MB2) derived from
p-hydroxybenzylidene-2-imino-6-methylpyridine (SB2): The titled Mannich Base was prepared by
stirring p-hydroxybenzylidine-2-amino-6-methylpyridine (2.12gm) with 20ml of
methanol. The product was then cooled to 0oC and then
sodiumborohydride (0.2gm) was added with it in three or four installments with
continuous stirring over a period of 1 hour. Slowly the temperature was raised
to room temperature. A light brown colored solution resulted and then solvent
was slowly evaporated. A solid chocolate colored powder is obtained. It was then
washed with alcohol and dried in air. The mass spectra of the ligand exhibits m/z
values: 214, 198, 176, 121, 107 and 93 assignable to C13H14N2O,
C13H14N2, C12H12N2O,
C7H9N2, C6H7N2, and C6H7N
molecular ion. (c) Preparatiom of Metal Complexes A general method was used for the preparation
of trivalent nickel (II) complexes. The nickel acetate/ sulphate/ nitrate were
used in 1:2::metal: ligand ratio with MB1 and MB2.
Ethanol and water were used as solvent. The resulting mixture was stirred for
15-20 minutes and refluxed for 3-4 hours on a water bath. The precipitated
complex was filtered and washed with ethanol, ether and dried in air. (Table:
1). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Result and Discussion |
The newly synthesized nickel
(II) complexes of MB1 and MB2 were of different
shades of brown and green color and soluble in DMF/DMSO but sparingly soluble
in ethanol, acetone and water. The analytical estimations suggest that these
complexes containing two molecules of Mannich base are coordinated to each
nickel atom in 1:2 metal: ligand stoichiometry.( Table: 1).
Table-1 Physical Properties,
Analytical Data and Magnetic Moment Values of Metal Complexes of MB1 and
MB2
Magnetic Measurements The magnetic moment values for
all the present complexes were measured at room temperature and lie between
2.80-3.20 B.M. The values of magnetic moments of these complexes were shown in
Table:- 1. The observed magnetic moment values have good relation with the
complexes having 2A2g or 3B1g ground term
and these values also depend on the magnitude of the orbital contribution
expected for similar hexa-coordinated nickel (II) ions. The observed values
were slightly higher than the spin only value (2.83 B.M.), probably due to
slight distortion from pure octahedral to tetragonal symmetry. Infra-Red Spectral Studies In the infra-red spectra of
SB1 and SB2 show the bands at 1605-1610 cm-1 due to azomethine which were
disappeared in the spectrum of MB1 and MB2 are new bands were observed in the
region 3358-3365 cm-1 due to the secondary amino group . In Nickel (II)
complexes , these bands were shifted to higher frequency region by 9-30 cm-1
indicating the involvement of nitrogen of secondary amino group in complexation
with metal ions. This is confirmed by the appearance of band at 472-484 cm-1
due to v (M-N) vibrations. Table - 2(a) and 2(b). Table- 2(A) Important Infra-Red
FrequencieS (Cm-1) of MB11 and Its Metal
Complexes
Table – 2 (b) Important Infra-Red
Frequencies (cm-1) of MB2 and Its Metal
Complexes
Electronic Spectral
Studies
In the present work, the observed electronic spectra of newly synthesized
divalent nickel complexes were recorded in DMF at room temperatures. The observed
electronic transitions and the ligand field spectral data of nickel (II)
complexes is presented in Table:- 3. The electronic spectra of all the
complexes show similar features.
Here, we are reporting the calculated values of the tetragonal parameters for
all nickel (II) complexes. The electronic spectra indicate that the three
transitions can be assigned i.e. 3A2g (3T, P), 3Eg
(3T, P) and 3A2g (3T,
F). This indicates that the high energy bands arise from the P-state and
assignment of 3A2g (P), 3Eg(P)
is predictable in the view of both Mannich bases (ligands).
Taking Ni (C10H10N2OS)2 (CH3COO)2 as
an example, the pronounced tetragonal splitting for the excited level 3T2g (F)
and 3T1g (F) has been observed. For 3T2g splitting,
these bands were observed in the region 9107 and 10917 cm-1 and
for 3T1g (F) splitting, these bands were
observed in the region 14513 and 16286 cm-1 respectively.
A number of theoretical methods have been developed for calculating the
transition energy and various crystal or ligand field parameters but in the
present work, all newly synthesized nickel (II) complexes of MB1 and
MB2 were treated with Normalised Spherical Harmonic
(NSH) Hamiltonian theory. Table - 3 Ligand
Field Spectral Data (9000 – 30,000 Cm-1) of Nickel (Ii) Complexes of
Mb1 And Mb2
Normalised Spherical Harmonic
(NSH) Hamiltonian Theory Applied on Nickel (II) Complexes of MB1 and
MB2
NSH Hamiltonian is basically used as a means of
analyzing the electronic spectra of both cubic and non-cubic metal complexes.
It explains the magnitudes of each term in the perturbation. Hamiltonian is
entirely independent of the magnitude of any other term. Each term is projected
octahedral vector component and therefore, is normalized for finite
3-dimensional geometries: to distinguish upper case nomenclature (eg. DQ, DS,
DT etc.) will be employed instead of the lower case parameters (eg. Dq, Ds, Dt
etc.). Using the NSH Hamiltonian and the projected wave
function, matrix elements for any dn or fn configuration
in any geometry, can be simply constructed for a D4h molecule.
In the present nickel (II) complexes, the absolute ligand field parameters DQ,
DS, DT, DQL, DQZ etc. have been calculated with the
help of NSH Hamiltonian theory. The
ratio of DT/DQ which gives the amount of distortion have been calculated and
indicated that the structure of the present complexes lie somewhere between
square planar and octahedral structure. The calculated and
experimental results were in good agreement with the previously reported
results which provide a strong support for tetragonal structure of nickel (II)
complexes which is a sort of distorted octahedron in which two groups along the
z-axis are at a larger distance from the central nickel (II) ion than the four
groups along x and y axis. The results are listed in Table :- 4(a) and 4(b). Table – 4(a) Calculated Electronic Spectral
Parameters (cm-1) of Nickel (II) Complexes of MB1
Table – 4(b) Calculated Electronic Spectral
Parameters (cm-1) of NICKEL (II) COMPLEXES OF MB2
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conclusion |
Studies made in present work are focused mainly on structure elucidation of nickel (II) complexes of MB1 and MB2. Different spectral studies viz. infra-red, electronic spectral studies, and NSH treatment proposed the distorted octahedral geometry for the nickel (II) complexes of both the Mannich bases. As Mannich bases and their metal complexes have wide scope as antimicrobial field, hence these metal complexes may be of great academic and commercial interest. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References | 1. Shilpi, G., Maheshware, M.K., Chem. Sci.Trans.,2(3), 927-935 (2013).
2. Muthukumar, C., Valarselvan, S., Sabastiyan, A.,and Yosuva Suvaikin, M., Chem.Sci. Rev., 3(10), 127-139(2014).
3. Dumbrava, A., Olar, R., Badea, M., Patrascu, F., Grecu, M. N., Marutescu, L., and Stanica, N., J. Therm. Anal. Calorim., (2013).
4. Varma, R.S., Rastogi, N. and Singh, A.P., J. Heterocyclic Chem., 12, 159(2002).
5. Bala, S., Sharma, N., Kajal, A., Kamboj, S. and Saini, V., International J. Med. Chem., Article ID 191072,1-15(2014).
6. Roman, G., Eur. J. Med. Chem., 89, 743(2015).
7. Cotton, F.A. and Willkinson, G., Advanced Inorganic Chemistry, Interscience, New York, (2003).
8. Jorgensen, C.K., Absorption Spectra and Chemical Bonding in Complexes, Pergamon, New York and London, (1996).
9. Sabastigam, A. and Venkappayya, D., J. Indian Chem. Soc., 67, 584(1990)
10. Prabu, V. and Venkappayya, D., J. Indian Chem. Soc., 72, 681(1995)
11. Halli, M.P., Hiremath, A.C. and Huggi, N.V., J. Indian Chem. Soc., 40, 645(2001)
12. Niklas, N., Wolfs, S., Liehr, G., Anson, C.E., Powell, A.K. and Alfassar, R., Inorg. Chim. Acta, 314, 126(2001)
13. Sharma, S., Himalayan Chem. Phar. Bull., 17, 8(2000)
14. Mane, P.S. and Shirodhkar, S.G., J. Indian Chem. Soc., 79(4), 376(2002)
15. Mohanan, K. and Murukan, B., Synth. React. Inorg. Met. Org. Chem., 35(10), 1553(2005)
16. Raman, N., Kulandaisamy, A. and Jeysubramanian, K., Indian J. Chem., 41(A), 942(2002)
17. Saydam, S. and Alkan, C., Pol. J. Chem., 75(1), 29(2001)
18. Bethe, H., Ann. Phys., 3, 133(1929) |