|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ultrasonic Study of Molecular Interaction in Binary Liquid Mixture of Benzonitrile with Butanol-1 at 298.15K, 303.15K, 308.15K | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Paper Id :
16308 Submission Date :
2022-08-11 Acceptance Date :
2022-08-22 Publication Date :
2022-08-25
This is an open-access research paper/article distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For verification of this paper, please visit on
http://www.socialresearchfoundation.com/innovation.php#8
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
Ultrasonic velocity and density are experimented for organic binary liquid mixture of Benzonitrile with Butanol - 1 at T= (298.15, 303.15 and 308.15) k across the wide range of composition.
The experimented data have been used to calculate isentropic compressibility (βs), intermolecular free length (Lf), molar sound velocity (Rm), specific acoustic independence (Z) and molar volume (Vm).
Excess values of isentropic compressibility (βsE), intermolecular free length (LfE) and molar volume (VmE) and values of ultrasonic velocity (V) are plotted against the mole fraction of Benzonitrile across the entire range of composition. The variation of these properties is discussed in terms of intermolecular interactions.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Keywords | Ultrasonic velocity, Intermolecular interaction, Binary mixtures, Density. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction |
Vibrational waves of a frequency above the hearing rangeof the normal ear, i.e. 16 to 20,000 cycles per second are referred to as ultrasonics.
Curie brothers (1880)discovered the phenomenon of “piezoelectric effect” which is the development of electric charges on the definite faces of some crystals like quartz.
Since quartz crystals possess the piezoelectric property to a greater extent, they are highly stable. I.e. strong, hard and have low temperature and used as transducer for the purpose of research work in ultrasonics.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective of study | High amplitude vibrations in ultrasonic study causes the permanent change in the medium while the low amplitude vibrations in the ultrasonic study do not cause permanent change in the medium. The present study is based on low amplitude vibrations. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Review of Literature | Ultrasonic velocity measurements play an important role to detect weak and strong molecular interaction in liquid mixtures[1-2]. [Thermodynamic properties obtained from the ultrasonic velocity and density such as isentropic compressibility, intermolecular free length and molar volume provide useful information to understand the nature and type of interaction in the liquid mixture. Thermodynamic studies for liquid mixtures are useful to understand the different type of interactions, i.e.- dipole - dipole[3-6] and dipole induced dipole[7-10] between polar-polar[11-12] and nonpolar system[13-16] Ultrasonic velocity and density in fourteen binary liquid mixtures studies by Fort and Moore17 representing different types and degree of interaction. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main Text |
Experimental Details The ultrasonic velocities is measured by using a single crystal ultrasonic interferometer (M/S Mittal Enterprises, New Delhi) operating at 2 MHz frequency with an accuracy of ±0.05%(Model F-81), which is calibrated with water and benzene. The temperature stability is maintained within 0.1K by circulating thermostated water around interferometer cell that contains the liquid with a circulating pump. In order to minimize the error of measurements several maxima of ultrasonic velocity are allowed to pass and their number n is counted. All maxima are recorded with highest swing of the needle on the micrometer scale of the interferometer. The total distance d moved by the reflector of the interferometer cell is given by d = n λ/2 ----------------------------------(1) Where λ is wavelength of ultrasonic wave. The frequency ν of the interferometer crystal is accurately known (2 MHz) and using λ from eq1 , the ultrasonic velocity v m/s is calculated by the relation v = ν λ--------------------------------------- (2) Employing the measurement values of velocity (v) and density (ρ) some thermodynamic properties such as isentropic compressibility (βs), intermolecular free length (Lf) and molar volume (Vm) have been computed through the following expressions[18-19]. Molar volume ...… (1) Vm = [M-/e] Isentropic compressibility …… (2) βs = 1/V2ρ Intermolecular free length …… (3) Lf = [K √βs] High purity chemicals (E. Merck and S.D. fine) are used and purified by the standard methods[20]. Excess values of various parameters are computed using the following relation:- AE = (A) exp – (X1A1 + X2A2) where AE is excess function (A) exp is experimental value of the mixture, A1 and A2 are the values for the pure components 1 and 2 whose mole fractions are X1 and X2. The results obtained from these investigations have been incorporated in Table (1-3) and in Graph (1-4). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Result and Discussion |
Experimental results are given in table 1,2 and 3. Ultrasonic velocity and density decreases when temperature increases (from 298.15k, 303.15k, 308.15k) whereas isentropic compressibility and molar volume increases when temperature increases.
Table 1‒Experimentally determined ultrasonic velocity, density, calculated excess values of isentropic compressibility, intermolecular free length and molar volume for Benzonitrile with Butanol-1 at 298.15K
Table 2‒Experimentally determined ultrasonic velocity, density, calculated excess values of isentropic compressibility, intermolecular free length and molar volume for Benzonitrile with Butanol-1 at 303.15K
Table 3‒Experimentally determined ultrasonic velocity, density, calculated excess values of isentropic compressibility, intermolecular free length and molar volume for Benzonitrile with Butanol-1 at 308.15K
Excess values of isentropic compressibility (Fig-2), intermolecular free length (Fig-3) and molar volume(Fig-4) show negative deviations. While density decreases with the increase in concentration of Butanol-1.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conclusion |
In the present study βsE, LfE and VmE all have been found to be negative. This indicates that specific interaction is taking place between the components of mixtures. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References | 1. Joykumar S, Karunanithi N &Kannappan V, Indian J. Pure Appl. Phys., 34(1996)761.
2. Kannappan V, Xavier Jesu Raja S & Jaya Santhi R, Indian J. Pure Appl. Phys., 41(2003)690.
3. Mozo I, Fuente I G, Gonzalez J A &Cobos J C, J. Chem. Thermodyn., 42(2010)17.
4. Kumar R, Mahesh R, Shanmugapriyan B &Kannappan V, Indian J. Pure Appl. Phys., 50(2010)633.
5. Iloukhani H &Samiey B, Phys. Chem. Liq., 45(2007)571.
6. Mehra R & Gaur A K, J. Chem. Engg. Data, 53(2008)863.
7. Sastry N V, Thakor R R& Patel M C, J. Mol. Liq., 114(2009)13.
8. Treszczanowicz A J &Treszczanowicz T, Fluid Phase Equilib., 135(1997)179.
9. Mehra R &Israni R, Indian J. Pure Appl. Phys., 38(2000)341.
10. Dean R, Moulins J, MacInnis A &Palepu R M, Phys. Chem. Liq., 47(2009)302.
11. Mehra R & Gaur A K, J. Ind. Council Chem., 26(2009)85.
12. Kubendran1 R, Khan F L A, Asghar J, Aravinthraj M &Udayaseelan J, Arch. Appl. Sci. Res., 3(2011)568.
13. Mehra R &Israni R, Indian J. Chem. Technol., 9(2002)341.
14. Mehra R &Israni R, J. Indian Chem. Soc., 81(2004)227.
15. Mehra R Z, Phys. Chem., 219(2005)425.
16. Mehra R & Gaur A K, J. Modern Chemistry & Chemical Technology, 2(2011)24.
17. Fort R J and Moore W R, Trans Faraday Soc., 61(1965)2102.
18. Subramaniyam Naidu P &Ravindra Prasad K, Indian J. Pure Appl. Phys., 42(2004)512.
19. EzhilPavai R, Vasantharani P &KannappanA ,Indian J. Pure Appl. Phys., 42(2004)934.
20.Vogel A I, A textbook of practical Organic Chemistry, 5thEdn (Jhon Willey, New York) 1989. |