|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Convergence of the
Newton-Raphsons Method |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Paper Id :
17870 Submission Date :
2023-09-28 Acceptance Date :
2023-10-15 Publication Date :
2023-10-25
This is an open-access research paper/article distributed under the terms of the Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For verification of this paper, please visit on
http://www.socialresearchfoundation.com/resonance.php#8
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
With the help of Newton-Raphson method, the author has found out the fourth roots of the natural numbers from 1 to 30. These values have been compared with the actual values. The minimum error and minimum percentage error (both are zero) has been obtained in the determination of fourth roots of 1 and 16. The average value in the error has been found to be0.000000094927. The maximum error 0.000001154116 and maximum percentage error 0.000097049224have been obtained in the determination of fourth roots of 2. The average value of percentage error is 0.000006303776. Generally, numerical rate of convergence in the determination of the fourth root of numbers from 1 to 30 by Newton-Raphson method decreases as the number increases. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Keywords | Convergence, Newton-Raphson method, Numerical accuracy, Iteration, Stopping tolerance, Approximation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction | In this paper researcher is going to discuss the convergence
of Newton-Raphson method.The Newton-Raphson method, or Newton Method, is a
powerful technique for solving equations numerically. Like so much of the
differential calculus,it is based on the simple idea of linear approximation. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective of study | The main motive of this research paper is to find out the
fourth roots of natural numbers with the help of Newton-Raphson method. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Review of Literature | Two research papers entitled “Convergence of bisection
method” and “convergence of the method of false position” has been
studied.[1,2] The Newton-Raphson method finds the slope (the
tangent line) of the function at the current point and uses the zero of the
tangent line as the next reference point. The process is repeated until the root
is found. The Newton-Raphson method is much more efficient than other
"simple" methods such as the Bisection method. However, the
Newton-Raphson method requires the calculation of the derivative of a function
at the reference point, which is not always easy. Furthermore, the tangent line
often shoots wildly and might occasionally be trapped in a loop. The promised
efficiency is then unfortunately too good to be true. It is recommended to
monitor the step obtained by the Newton-Raphson method. When the step is too
large or the value is oscillating, other more conservative methods should take
over the case.[18-24] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Methodology | The Newton-Raphson method finds the slope (the tangent line) of the function at the current point and uses the zero of the tangent line as the next reference point. The process is repeated until the root is found. The Newton-Raphson method is much more efficient than other "simple" methods such as the Bisection method. However, the Newton-Raphson method requires the calculation of the derivative of a function at the reference point, which is not always easy. Furthermore, the tangent line often shoots wildly and might occasionally be trapped in a loop. The promised efficiency is then unfortunately too good to be true. It is recommended to monitor the step obtained by the Newton-Raphson method. When the step is too large or the value is oscillating, other more conservative methods should take over the case.[18-24] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Result and Discussion |
Calculation of fourth
root of 1 by the Newton-Raphson method
The
Newton-Raphson method has been used to calculate the root of equation f(x) = x4 –
1 = 0 with
initial guess of x0 = 0.1
by using C++ computer program. Number of iterations, root guessed by the
Newton-Raphson method in each iteration (xn)
and value of function at x = xnis
given in Table-1. Root guessed by the Newton-Raphson method after each
iterationis shown in Graph-1. Table-1: Root guessed
by the Newton-Raphson method in each iteration (xn) and value of function f(x) =x4
– 1at atx=xn
Graph-1: Root guessed by the Newton-Raphson method in the equation x4 – 1 =0 Calculation of fourth
root of 2 by the Newton-Raphson method The
Newton-Raphson method has been used to calculate the root of equation f(x) = x4 –
2 = 0 with initial guess of x0 = 0.1 by using C++ computer program. Number of iterations, root guessed by the Newton-Raphson method in each iteration (xn) and value of function at x = xnis given in Table-2. Root guessed by the Newton-Raphson method after each iterationis shown in Graph-2. Table-2: Root guessed by the Newton-Raphson method in each iteration (xn) and value of function f(x) =x4 – 2at atx=xn
Graph-2: Root guessed
by the Newton-Raphson method in the equation x4 – 2 =0
Consolidated
analysis of the fourth roots of numbers from 1 to 30 calculated by
Newton-Raphson method The value of fourth root, error in the determination of fourth root, percentage error and numerical rate of convergence in the Newton-Raphson method are shown in Table-3(a) and Table-3(b). The actual value of fourth root and the value of fourth root calculated by Newton-Raphson method are shown in Graph-3. Error in the value of fourth root calculated by Newton-Raphson methodis given in Graph-4. Percentage error in the values of fourth root calculated by Newton-Raphson methodis given in Graph-5. Numerical rate of convergence in the determination ofthe fourth roots by Newton-Raphson methodis given in Graph-6. Table-3(a): Actual value of fourth root, value of fourth root calculated by Newton-Raphson method and error in the determination of fourth root by Newton-Raphson method in findingthe roots of equations f(x) = x4 – n = 0; n = 1, 2, …., 30 Table-3(b): Actual value of fourth root, percentage error in the calculation of fourth root and numerical rate of convergence of Newton-Raphson method in the determination of roots of equations f(x) = x4 – n = 0; n = 1, 2, …., 30 Graph-3: Actual value
of fourth root and the value of root calculated by Newton-Raphson method in the
equations f(x) = x4 – n=0; n=1, 2, …., 30 Graph-4: Error in the value of fourth root calculated by Newton-Raphson method in the equations f(x) = x4 – n=0; n=1, 2, …., 30 Graph-5: Percentage error in the value of fourth root calculated by Newton-Raphson method in the equations f(x) = x4 – n=0; n=1, 2, …., 30 Graph-6: Numerical rate of convergence in the determination of the fourth root by Newton-Raphson method in the equations f(x) = x4 – n=0; n=1, 2, …., 30 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conclusion |
Fourth roots of the natural numbers from 1 to 30 have been
found by Newton-Raphson method and these values have been compared with the
actual values. The minimum error zero and minimum percentage error zero has
been obtained in the determination of fourth roots of 1 and 16. The average
value in the error is 0.000000094927. The maximum error 0.000001154116 and
maximum percentage error 0.000097049224have been obtained in the determination
of fourth roots of 2. The average value of percentage error is 0.000006303776.
The normal trend in the fourth roots as obtained by the method of false
position is that the error and percentage error in the roots increase as the
number increase. Generally, numerical rate of convergence in the determination
of the fourth root of numbers from 1 to 30 by Newton-Raphson method decreases
as the number increases. Minimum, Maximum and average values of the numerical
rate of convergence are 1.010101010101, 1.388888888889 and 1.104698523392
respectively. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References | 1. Pandey L.; Nath T., The Scientific Temper, 13(2), 92,
2022. 2. Pandey L.; Nath T., The Scientific Temper, 13(2), 76,
2022. 3. Jeong M.; Ok Kim G.; Kim S., Computers and Graphics, 26
(2), 271, 2002. 4. Palacios M., Journal of Computational and Applied
Mathematics, 138 (2), 335, 2002. 5. Gutierrez J.M.; Hernandez M.A., Applied Mathematics and
Computation, 117(2), 223, 2001. 6. Ng, S. W.; Lee, Y. S., IEEE Trans. Circuits Systems I Fund.
Theory Appl., 47 (6), 809, 2000. 7. Galantai A., Journal of Computational and Applied
Mathematics, 124 (1), 25, 2000, 8. Priestley W. M., College Math Journal, 1999, 30, 5,
387-388. 9. John Mathews; Russell Howell, International Journal of
Mathematics Education in Science and Technology, 30 (2), 289, 1999. 10. Robert M. Corless, Mathematics Magazine, 29 (1), 34,
1998. 11. Lily Yau and Adi Ben-Israel, American Mathematical
Monthly, 105 (9), 806, 1998. 12. Steve Hetzler, College Math Journal, 28 (5), 348, 1997. 13. Lopez S., Computer Methods in Applied Mechanics and
Engineering, 145 (3), 323, 1997. 14. William F. F., James A. P., SIAM Review,38 (4), 658,
1996. 15. Chris C., College Math Journal,27 (5), 330,1996. 16. Plofker K., Historia Math., 23 (3), 246, 1996. 17. James A. W., College Math Journal, 26 (1), 22, 1995. 18. Davies, M., Math. Student, 47, 2, 1979. 19. MacLeod A. J., Internat. J. Math. Ed. Sci. Tech., 15 (1),
117, 1984. 20. Hart V. G.; Howard, L. N., Austral. Math. Soc. Gaz., 5
(3), 73, 1978. 21. Speck G. P., New Zealand Math. Mag., 14 (1), 34, 1977. |